| [1] |
ZHU L, TIAN L, JIANG S, et al. Advances in photothermal regulation strategies: From efficient solar heating to daytime passive cooling[J]. Chemical Society Reviews, 2023, 52(21): 7389-7460.
|
| [2] |
FAN R, CHEN G, ZHENG N, et al. Evaluation of the energy flow characteristics and efficiency of photothermal functional phase change materials for efficient solar thermal harvesting[J]. Solar Energy Materials and Solar Cells, 2024, 277: 113140.
|
| [3] |
MATUSZEK K, KAR M, PRINGLE J M, et al. Phase change materials for renewable energy storage at intermediate temperatures[J]. Chemical Reviews, 2022, 123(1): 491-514.
|
| [4] |
CHEN G, SU Y, JIANG D, et al. An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications[J]. Applied Energy, 2020, 264: 114786.
|
| [5] |
ZHANG P, WANG Y, QIU Y, et al. Novel composite phase change materials supported by oriented carbon fibers for solar thermal energy conversion and storage[J]. Applied Energy, 2024, 358: 122546.
|
| [6] |
LIU X, LIN F, GUO Z, et al. Diatomite porous ceramic-based phase change materials with Ti3C2Tx coating for efficient solar-thermal energy conversion[J]. Journal of Energy Storage, 2025, 107: 114967.
|
| [7] |
LIU Z, LI H, SUN M, et al. Polyvinyl alcohol-based phase change aerogel used for safety, thermal-comfortable, and quiet buildings[J]. Energy, 2025, 323: 135817.
|
| [8] |
WANG C, WANG L, LIANG W, et al. Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites[J]. Journal of Colloid and Interface Science, 2022, 605: 60-70.
|
| [9] |
CHEN Y, CHEN L, MA Q, et al. A novel kapok fiber aerogel based phase change materials with high thermal conductivity and efficient energy storage for photovoltaic thermal management[J]. Journal of Energy Storage, 2024, 104: 114454.
|
| [10] |
LI R, ZHANG L, SHI L, et al. MXene Ti3C2: An effective 2d light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 3752-3759.
|
| [11] |
ZENG W, YE X, DONG Y, et al. MXene for photocatalysis and photothermal conversion: Synthesis, physicochemical properties, and applications[J]. Coordination Chemistry Reviews, 2024, 508: 215753.
|
| [12] |
ZHU C, HAO Y, WU H, et al. Self-assembly of binderless mxene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding[J]. Nano-Micro Letters, 2023, 16(1): 57.
|
| [13] |
JIANG L, ZHANG W, ZHANG R, et al. High latent heat phase change materials composites based on mxene/biomass-derived cellulose nanocrystalline aerogel for solar-thermal energy conversion and storage[J]. Ceramics International, 2024, 50(10): 17428-17438.
|
| [14] |
LEE J, HONG S, SUN Y, et al. Parasitic reaction driven facile preparation of segregated-MXene/polycarbonate nanocomposites for efficient electromagnetic interference shielding[J]. Surfaces and Interfaces, 2023, 40: 103101.
|
| [15] |
SHENG X, LI S, HUANG H, et al. Anticorrosive and uv-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 mxene nanosheets[J]. Journal of Materials Science, 2021, 56(6): 4212-4224.
|
| [16] |
JI X, JIANG Y, LIU T, et al. MXene aerogel-based phase change film for synergistic thermal management inspired by antifreeze beetles[J]. Cell Reports Physical Science, 2022, 3(4): 100815.
|
| [17] |
WANG F, GUO J, LI S, et al. Facile self-assembly approach to construct a novel MXene-decorated nano-sized phase change material emulsion for thermal energy storage[J]. Ceramics International, 2022, 48(4): 4722-4731.
|
| [18] |
XU W, SU J, LIN J, et al. Enhancing the light-thermal absorption and conversion capacity of diatom-based biomass/polyethylene glycol composites phase change material by introducing MXene[J]. Journal of Energy Storage, 2023, 72: 108253.
|
| [19] |
WU H, HU X, LI X, et al. Large-scale fabrication of flexible EPDM/MXene/PW phase change composites with excellent light-to-thermal conversion efficiency via water-assisted melt blending[J]. Composites Part A: Applied Science and Manufacturing, 2022, 152: 106713.
|
| [20] |
DING Y, LU X, LIU S, et al. Sandwich-structured multifunctional composite films with excellent electromagnetic interference shielding and light/electro/magnetic-to-thermal conversion and storage capabilities[J]. Composites Part A: Applied Science and Manufacturing, 2022, 163: 107178.
|