储能科学与技术 ›› 2013, Vol. 2 ›› Issue (1): 42-54.doi: 10.3969/j.issn.2095-4239.2013.01.004
孙洋, 董金平, 唐春, 林明翔, 徐凯琪, 闫勇, 黄学杰
收稿日期:
2012-12-15
修回日期:
2012-12-28
出版日期:
2013-02-19
发布日期:
2013-02-19
通讯作者:
黄学杰,研究员,博士生导师,主要研究方向为锂二次电池及其关键材料,E-mail:xjhuang@iphy.ac.cn。
作者简介:
孙洋(1988--),男,博士研究生,研究方向为锂 xjhuang@iphy.ac.cn.二次电池电极材料的第一性原理计算
SUN Yang, DONG Jinping, TANG Chun, LIN Mingxiang, XU Kaiqi, YAN Yong, HUANG Xuejie
Received:
2012-12-15
Revised:
2012-12-28
Online:
2013-02-19
Published:
2013-02-19
摘要: 本文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2012年10月1日至2012年11月30日上线的锂电池研究论文,共有824篇,选择其中100篇加以评论.层状氧化物正极材料继续受到关注的同时,高电压的尖晶石结构LiNi0.5M1.5O4吸引了越来越多的关注.高容量的Si基负极材料一直是研究的热点,然而其体积膨胀,长循环效率低的缺点尚未被克服.固态电解质是解决锂离子电池安全问题的方案之一,但从目前的研究水平来看距离实际应用还有很长的路要走.具有高能量密度的新体系,例如Li-S和Li-O2锂电池,也是目前研究的热点.除了这些以材料为主的研究之外,针对电池和电池应用的研究论文也在多起来,对电池技术的创新也将产生促进作用.
中图分类号:
孙洋, 董金平, 唐春, 林明翔, 徐凯琪, 闫勇, 黄学杰. 锂电池百篇论文点评(2012.10.1--2012.11.30)[J]. 储能科学与技术, 2013, 2(1): 42-54.
SUN Yang, DONG Jinping, TANG Chun, LIN Mingxiang, XU Kaiqi, YAN Yong, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Oct. 1 to Nov. 30, 2012)[J]. Energy Storage Science and Technology, 2013, 2(1): 42-54.
[1] Zhang X H,Yu C,Huang X D,et al. Novel composites Li (Li x Ni 0.34- x Mn 0.47 Co 0.19 O 2 (0.18 ≤ x ≤0.21):Synthesis and application as high-voltage cathode with improved electrochemical performance for lithium ion batteries[J]. Electrochim . Acta ,2012,81:233-238. [2] Rosina K J,Jiang M,Zeng D L,et al. Structure of aluminum fluoride coated Li Li 1/9 Ni 1/3 Mn 5/9 O 2 cathodes for secondary lithium-ion batteries[J]. J. Mater . Chem .,2012,22(38):20602-20610. [3] Song B H,Liu Z W,Lai M O,et al. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material[J]. Phys . Chem . Chem . Phys .,2012,14(37):12875-12883. [4] Amalraj S F,Markovsky B,Sharon D,et al. Study of the electrochemical behavior of the "inactive" Li 2 MnO 3 [J]. Electrochim . Acta ,2012,78:32-39. [5] Cai L,Liu Z C,An K,Liang C D. Probing Li-Ni cation disorder in Li 1- x Ni 1+ x - y Al y O 2 cathode materials by neutron diffraction[J]. J . Electrochem . Soc .,2012,159(7):A924-A928. [6] Chen G Y,Hai B,Shukla A K,Duncan H. Impact of initial Li content on kinetics and stabilities of layered Li 1+ x (Ni 0.33 Mn 0.33 Co 0.33 ) (1- x ) O 2 [J]. J . Electrochem . Soc. ,2012,159(9):A1543-A1550. [7] Murakami M,Yamashige H,Arai H,et al. Association of paramagnetic species with formation of LiF at the surface of LiCoO 2 [J]. Electrochim . Acta ,2012,78:49-54. [8] Nakahara K,Tabuchi M,Kuroshima S,et al. Drastically improved performances of graphite/Li 1.26 Mn 0.52 Fe 0.22 O 2 cell with stepwise pre-cycling treatment that causes peroxide forming[J]. J . Electrochem . Soc .,2012,159(9):A1398-A1404. [9] Conry T E,Mehta A,Cabana J,Doeff M M. Structural underpinnings of the enhanced cycling stability upon Al-substitution in LiNi 0.45 Mn 0.45 CoO 1- y Al y O 2 positive electrode materials for Li-ion batteries[J]. Chem . Mater .,2012,24(17):3307-3317. [10] Sun Y K,Chen Z H,Noh H J,et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nat . Mater .,2012,11(11):942-947. [11] Yim H,Kong W Y,Kim Y C,et al. Electrochemical properties of Li Li 0.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 cathode thin film by RF sputtering for all-solid-state lithium battery[J]. J . Solid State Chem .,2012,196:288-292. [12] Zheng J M,Xiao J,Yu X Q,et al. Enhanced Li + ion transport in LiNi 0.5 Mn 15 O 4 through control of site disorder[J]. Phys . Chem . Chem . Phys .,2012,14(39):13515-13521. [13] Zhong G B,Wang Y Y,Zhao X J,et al. Structural,electrochemical and thermal stability investigations on LiNi 0.5- x Al 2 x Mn 1.5- x O 4 (0≤2 x ≤10)as 5 V cathode materials[J]. J . Power Sources ,2012,216:368-375. [14] Sun W W,Cao F,Liu Y M,et al. Nanoporous LiMn 2 O 4 nanosheets with exposed(111)facets as cathodes for highly reversible lithium-ion batteries[J]. J . Mater . Chem .,2012,22(39):20952-20957. [15] Shin D W,Bridges C A,Huq A,et al. Role of cation ordering and surface segregation in high-voltage spinel LiMn 15 Ni 0.5- x M x O 4 (M = Cr,Fe,and Ga)cathodes for lithium-ion batteries[J]. Chem . Mater .,2012,24(19):3720-3731. [16] Lee E S,Nam K W,Hu E Y,Manthiram A. Influence of cation ordering and lattice distortion on the charge-discharge behavior of LiMn 1.5 Ni 0.5 O 4 spinel between 50 and 20 V[J]. Chem . Mater .,2012,24(18):3610-3620. [17] Lee S,Cho Y,Song H K,et al. Carbon-coated single-crystal LiMn 2 O 4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries[J]. Angew . Chem . -Int . Edit .,2012,51(35):8748-8752. [18] Demeaux J,Caillon-Caravanier M,Galiano H,et al. LiNi 0 . 4 Mn 16 O 4 /electrolyte and carbon black/electrolyte high voltage interfaces:To evidence the chemical and electronic contributions of the solvent on the cathode-electrolyte interface formation[J]. J . Electrochem . Soc .,2012,159(11):A1880-A1890. [19] Gu M,Belharouak I,Genc A,et al. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries[J]. Nano Lett .,2012,12(10):5186-5191. [20] Bhaskar A,Bramnik N N,Trots D M,et al. In situ synchrotron diffraction study of charge-discharge mechanism of sol gel synthesized LiM 0.5 Mn 15 O 4 (M = Fe,Co)[J]. J . Power Sources ,2012,217:464-469. [21] McCalla E,Carey G H,Dahn J R. Lithium loss mechanisms during synthesis of layered Li x Ni 2- x O 2 for lithium ion batteries[J]. Solid State Ion ,2012,219:11-19. [22] Dong Y Z,Xie H,Song J,et al. The prepared and electrochemical property of Mg doped LiMnPO 4 nanoplates as cathode materials for lithium-ion batteries[J]. J . Electrochem . Soc .,2012,159(7):A995-A998. [23] Liu X S,Liu J,Qiao R M,et al. Phase transformation and lithiation effect on electronic structure of Li x FePO 4 :An in-depth study by soft X-ray and simulations[J]. J . Am . Chem . Soc .,2012,134(33):13708-13715. [24] Mba J M A,Croguennec L,Basir N I,et al. Lithium insertion or extraction from/into tavorite-type LiVPO 4 F:An in situ X-ray diffraction study[J]. J . Electrochem . Soc .,2012,159(8):A1171-A1175. [25] Norberg N S,Kostecki R. The degradation mechanism of a composite LiMnPO 4 cathode[J]. J . Electrochem . Soc .,2012,159(9):A1431-A1434. [26] Norberg N S,Kostecki R. Interfacial phenomena at a composite LiMnPO 4 cathode[J]. J . Electrochem . Soc .,2012,159(7):A1091-A1094. [27] van Bommel A,Divigalpitiya R. Effect of calendering LiFePO 4 electrodes[J]. J. Electrochem. Soc. ,2012,159(11):A1791-A1795. [28] Aravindan V,Cheah Y L,Ling W C,Madhavi S. Effect of LiBOB additive on the electrochemical performance of LiCoPO 4 [J]. J . Electrochem . Soc .,2012,159(9):A1435-A1439. [29] Clement R J,Pell A J,Middlemiss D S,et al. Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations[J]. J . Am . Chem . Soc .,2012,134(41):17178-17185. [30] Wang J W,Liu X H,Zhao K J,et al. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers[J]. ACS Nano ,2012,6(10):9158-9167. [31] Pharr M,Zhao K J,Wang X W,et al. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries[J]. Nano Lett .,2012,12(9):5039-5047. [32] Son S B,Kim S C,Kang C S,et al. A highly reversible nano-Si anode enabled by mechanical confinement in an electrochemically activated Li x Ti 4 Ni 4 Si 7 matrix[J]. Adv . Energy Mater .,2012,2(10):1226-1231. [33] Soni S K,Sheldon B W,Xiao X C,et al. Diffusion mediated lithiation stresses in Si thin film electrodes[J]. J . Electrochem . Soc .,2012,159(9):A1520-A1527. [34] Su Y Z,Li S,Wu D Q,et al. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage[J]. ACS Nano ,2012,6(9):8349-8356. [35] He Y,Yu X Q,Li G,et al. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J]. J . Power Sources ,2012,216:131-138. [36] Koo B,Kim H,Cho Y,et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angew . Chem . -Int . Edit .,2012,51(35):8762-8767. [37] Gu M,Li Y,Li X L,et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix[J]. ACS Nano ,2012,6(9):8439-8447. [38] Han Z J,Yabuuchi N,Shimomura K,et al. High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries[J]. Energy & Environmental Science ,2012,5(10):9014-9020. [39] Elazari R,Salitra G,Gershinsky G,et al. Li ion cells comprising lithiated columnar silicon film anodes,TiS 2 cathodes and fluoroethyene carbonate(FEC) as a critically important component[J]. J . Electrochem . Soc .,2012,159(9):A1440-A1445. [40] Mao S,Wen Z H,Kim H,et al. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications[J]. ACS Nano ,2012,6(8):7505-7513. [41] Yamada M,Inaba A,Ueda A,et al. Reaction mechanism of "SiO"-carbon composite-negative electrode for high-capacity lithium-ion batteries[J]. J . Electrochem . Soc .,2012,159(10):A1630-A1635. [42] Harris S J,Rahani E K,Shenoy V B. Direct in situ observation and numerical simulations of non-shrinking-core behavior in an MCMB graphite composite[J]. J . Electrochem . Soc .,2012,159(9):A1501-A1507. [43] Jang B,Park M,Chae O B,et al. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes[J]. J . Am . Chem . Soc .,2012,134(36):15010-15015. [44] Li X F,Yang J L,Hu Y H,et al. Novel approach toward a binder-free and current collector-free anode configuration:Highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage[J]. J . Mater . Chem .,2012,22(36):18847-18853. [45] Li X L,Qi W,Mei D H,et al. Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocomposites[J]. Adv . Mater .,2012,24(37):5136-5141. [46] Kitta M,Akita T,Maeda Y,Kohyama M. Study of surface reaction of spine l Li 4 Ti 5 O 12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy[J]. Langmuir ,2012,28(33):12384-12392. [47] Ganapathy S,Wagemaker M. Nanosize storage properties in spinel Li 4 Ti 5 O 12 explained by anisotropic surface lithium insertion[J]. ACS Nano ,2012,6(10):8702-8712. [48] Zheng Z F,Wang Y. 3D structure of electrode with inorganic solid electrolyte[J]. J . Electrochem . Soc .,2012,159(8):A1278-A1282. [49] Zhao Y S,Daemen L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J . Am . Chem . Soc .,2012,134(36):15042-15047. [50] Woo J H,Trevey J E,Cavanagh A S,et al. Nanoscale interface modification of LiCoO 2 by Al 2 O 3 atomic layer deposition for solid-state Li batteries[J]. J . Electrochem . Soc .,2012,159(7):A1120-A1124. [51] Arruda T M,Kumar A,Kalinin S V,et al. The partially reversible formation of Li-metal particles on a solid Li electrolyte:Applications toward nanobatteries[J]. Nanotechnology ,2012,23(32). [52] ChikuM,TsujiwakiW,Higuchi E,et al. Microelectrode studies on kinetics of charge transfer at an interface of Li metal and Li 2 S-P 2 S 5 solid electrolytes[J]. Electrochemistry ,2012,80(10):740-742. [53] Domi Y,Ochida M,Tsubouchi S,et al. Electrochemical AFM observation of the HOPG edge plane in ethylene carbonate-based electrolytes containing film-forming additives[J]. J . Electrochem . Soc .,2012,159(8):A1292-A1297. [54] Liu Y B,Cai Z J,Tan L,Li L. Ion exchange membranes as electrolyte for high performance Li-ion batteries[J]. Energy & Environmental Science ,2012,5(10):9007-9013. [55] Xia X,Ping P,Dahn J R. The reactivity of charged electrode materials with electrolytes containing the flame retardant,triphenyl phosphate[J]. J . Electrochem . Soc .,2012,159(11):A1834-A1837. [56] Zhou S S,Han H B,Nie J,et al. Improving the high-temperature resilience of LiMn 2 O 4 based batteries:LiFNFSI an effective salt[J]. J . Electrochem . Soc .,2012,159(8):A1158-A1164. [57] Zuo X,Liu X M,Cai F,et al. A novel all-solid electrolyte based on a co-polymer of poly-(methoxy/hexadecal-poly(ethylene glycol)methacrylate)for lithium-ion cell[J]. J . Mater . Chem .,2012,22(41):22265-22271. [58] Kramer E,Schmitz R,Niehoff P,et al. SEI-forming mechanism of 1-fluoropropane-2-one in lithium-ion batteries[J]. Electrochim . Acta ,2012,81:161-165. [59] Wang Z L,Xu D,Xu J J,et al. Graphene oxide gel-derived,free-standing,hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O 2 batteries[J]. Adv . Functional Mater .,2012,22(17):3699-3705. [60] Younesi R,Hahlin M,Treskow M,et al. Ether based electrolyte,LiB(CN)(4)salt and binder degradation in the Li-O 2 battery studied by hard X-ray photoelectron spectroscopy(HAXPES)[J]. J . Phy . Chem . C ,2012,116(35):18597-18604. [61] Shui J L,Karan N K,Balasubramanian M,et al. Fe/N/C composite in Li-O 2 battery:Studies of catalytic structure and activity toward oxygen evolution reaction[J]. J . Am . Chem . Soc .,2012,134(40):16654-16661. [62] Herranz J,Garsuch A,Gasteiger H A. Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li-air battery electrolytes[J]. J . Phy . Chem . C ,2012,116(36):19084-19094. [63] Kitaura H,Zhou H S. Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium,Li 1+ x Al y Ge 2- y (PO 4 ) 3 solid electrolyte and carbon nanotube air electrode[J]. Energy & Environmental Science ,2012,5(10):9077-9084. [64] Leskes M,Drewett N E,Hardwick L J,et al. Direct detection of discharge products in lithium-oxygen batteries by solid-state NMR spectroscopy[J]. Angew . Chem . -Int . Edit .,2012,51(34):8560-8563. [65] Lu Y C,Crumlin E J,Veith G M,et al. In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions[R]. Scientific Reports,2012:2. [66] Nakanishi S,Mizuno F,Nobuhara K,et al. Influence of the carbon surface on cathode deposits in non-aqueous Li-O 2 batteries[J]. Carbon ,2012,50(13):4794-4803. [67] Dong S M,Chen X,Wang S,et al. 1D coaxial platinum/titanium nitride nanotube arrays with enhanced electrocatalytic activity for the oxygen reduction reaction:Towards Li-air batteries[J]. Chemsuschem ,2012,5(9):1712-1715. [68] Gallant B M,Mitchell R R,Kwabi D G,et al. Chemical and morphological changes of Li-O 2 battery electrodes upon cycling[J]. J . Phy . Chem . C ,2012,116(39):20800-20805. [69] Yang W,Salim J,Li S A,et al. Perovskite Sr 0.95 Ce 0.05 CoO 3 -delta loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries[J]. J . Mater . Chem .,2012,22(36):18902-18907. [70] Zhang T,Zhou H S. From Li-O 2 to Li-air batteries:Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons,ions,and oxygen[J]. Angew . Chem . -Int . Edit .,2012,51(44):11062-11067. [71] Yang Y,Zheng G Y,Misra S,et al. High-capacity micrometer-sized Li 2 S particles as cathode materials for advanced rechargeable lithium-ion batteries[J]. J . Am . Chem . Soc .,2012,134(37):15387-15394. [72] Yeon J T,Jang J Y,Han J G,et al. Raman spectroscopic and X-ray diffraction studies of sulfur composite electrodes during discharge and charge[J]. J . Electrochem . Soc .,2012,159(8):A1308-A1314. [73] Zhang L,Ji L W,Glans P A,et al. Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells[J]. Phys . Chem . Chem . Phys .,2012,14(39):13670-13675. [74] Zhou G M,Wang D W,Li F,et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & Environmental Science ,2012,5(10):8901-8906. [75] Ates M N,Allen C J,Mukerjee S,Abraham K M. Electronic effects of substituents on redox shuttles for overcharge protection of Li-ion batteries[J]. J . Electrochem . Soc .,2012,159(7):A1057-A1064. [76] Diao Y,Xie K,Xiong S Z,Hong X B. Insights into Li-S battery cathode capacity fading mechanisms:Irreversible oxidation of active mass during cycling[J]. J . Electrochem . Soc .,2012,159(11):A1816-A1821. [77] Evers S,Yim T,Nazar L F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery[J]. J . Phy . Chem . C ,2012,116(37):19653-19658. [78] Koo M,Park K I,Lee S H,et al. Bendable inorganic thin-film battery for fully flexible electronic systems[J]. Nano . Lett .,2012,12(9):4810-4816. [79] Ogihara N,Kawauchi S,Okuda C,et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell[J]. J . Electrochem . Soc .,2012,159(7):A1034-A1039. [80] Baker D R,Verbrugge M W. Intercalate diffusion in multiphase electrode materials and application to lithiated graphite[J]. J . Electrochem . Soc .,2012,159(8):A1341-A1350. [81] Chen Q N,Liu Y Y,Liu Y M,et al. Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy[J]. Appl . Phys . Lett .,2012,101(6). [82] Ishikawa H,Nishikawa Y,Mendoza O,et al. Chronopotentiometric investigation of anode deterioration in lithium ion secondary cell incorporating reference electrode[J]. Electrochemistry ,2012,80(10):762-764. [83] Klass V,Behm M,Lindbergh G. Evaluating real-life performance of lithium-ion battery packs in electric vehicles[J]. J . Electrochem . Soc .,2012,159(11):A1856-A1860. [84] Krause L J,Jensen L D,Dahn J R. Measurement of parasitic reactions in Li ion cells by electrochemical calorimetry[J]. J . Electrochem . Soc .,2012,159(7):A937-A943. [85] Illig J,Ender M,Chrobak T,et al. Separation of charge transfer and contact resistance in LiFePO 4 -cathodes by impedance modeling[J]. J . Electrochem . Soc .,2012,159(7):A952-A960. [86] Delacourt C,Safari M. Life simulation of a graphite/LiFePO 4 cell under cycling and storage[J]. J . Electrochem . Soc .,2012,159(8):A1283-A1291. [87] Dubarry M,Truchot C,Liaw B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. J . Power Sources ,2012,219:204-216. [88] Sagane F,Abe T,Ogumi Z. Electrochemical analysis of lithium-ion transfer reaction through the interface between ceramic electrolyte and ionic liquids[J]. J . Electrochem . Soc .,2012,159(11):A1766-A1769. [89] Deshpande R,Verbrugge M,Cheng Y T,et al. Battery cycle life prediction with coupled chemical degradation and fatigue mechanics[J]. J . Electrochem . Soc .,2012,159(10):A1730-A1738. [90] Sinha N N,Marks T H,Dahn H M,et al. The rate of active lithium loss from a soft carbon negative electrode as a function of temperature,time and electrode potential[J]. J . Electrochem . Soc .,2012,159(10):A1672-A1681. [91] Ye Y H,Shi Y X,Tay A A O. Electro-thermal cycle life model for lithium iron phosphate battery[J]. J . Power Sources ,2012,217:509-518. [92] Yan B,Lim C,Yin L L,Zhu L K. Three dimensional simulation of galvanostatic discharge of LiCoO 2 cathode based on X-ray nano-CT images[J]. J . Electrochem . Soc .,2012,159(10):A1604-A1614. [93] Chan M K Y,Wolverton C,Greeley J P. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon[J]. J . Am . Chem . Soc .,2012,134(35):14362-14374. [94] Jung S C,Choi J W,Han Y K. Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion:An atomic level rationale[J]. Nano . Lett .,2012,12(10):5342-5347. [95] Lee E,Persson K A. Li absorption and intercalation in single layer graphene and few layer graphene by first principles[J]. Nano . Lett .,2012,12(9):4624-4628. [96] Martin L,Vallverdu G,Martinez H,et al. First principles calculations of solid-solid interfaces:An application to conversion materials for lithium-ion batteries[J]. J . Mater . Chem .,2012,22(41):22063-22071. [97] Shi S Q,Lu P,Liu Z Y,et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. J . Am . Chem . Soc .,2012,134(37):15476-15487. [98] Belharouak I,Koenig G M,Tan T,et al. Performance degradation and gassing of Li 4 Ti 5 O 12 /LiMn 2 O 4 lithium-ion cells[J]. J . Electrochem . Soc .,2012,159(8):A1165-A1170. [99] Cherkashinin G,Nikolowski K,Ehrenberg H,et al. The stability of the SEI layer,surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling:X-ray photoelectron spectroscopy investigation[J]. Phys . Chem . Chem . Phys .,2012,14(35):12321-12331. [100] Guyot E,Seghir S,Diliberto S,et al. Lithium recovery by electrochemical transfer junction based on intercalation host matrix[J]. Electrochem . Commun .,2012,23:29-32. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||