储能科学与技术 ›› 2013, Vol. 2 ›› Issue (2): 112-125.doi: 10.3969/j.issn.2095-4239.2013.02.004
董金平, 孙洋, 唐春, 林明翔, 徐凯琪, 闫勇, 陈彬, 王昊, 黄学杰
收稿日期:
2013-02-06
出版日期:
2013-04-19
发布日期:
2013-04-19
作者简介:
董金平(1986--),男,博士研究生,研究方向为锂离子电池正极材料
DONG Jinping, SUN Yang, TANG Chun, LIN Mingxiang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, HUANG Xuejie
Received:
2013-02-06
Online:
2013-04-19
Published:
2013-04-19
Contact:
黄学杰,研究员,博士生导师,主要研究方向为锂二次电池及关键材料,E-mail:xjhuang@iphy.ac.cn.
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science 从2012 年12 月1 日至2013 年1 月31 日上线的锂电池研究论文,共有628篇,选择其中100 篇加以评论.层状氧化物正极材料继续受到关注的同时,高容量的Si 基负极材料一直是研究的热点,然而其体积膨胀,长循环效率低的缺点尚未被克服.固态电解质是解决锂离子电池安全问题的方案之一,但从目前的研究水平来看距离实际应用还有很长的路要走.新的聚合物电解质和具有高能量密度的Li-O2和Li-S电池也是研究热点,除了这些以材料为主的研究之外,针对电池特性和电池应用的研究论文也逐渐增多,对电池技术的创新也将产生促进作用.
中图分类号:
董金平, 孙洋, 唐春, 林明翔, 徐凯琪, 闫勇, 陈彬, 王昊, 黄学杰. 锂电池百篇论文点评(2012.12.1--2013.1.31)[J]. 储能科学与技术, 2013, 2(2): 112-125.
DONG Jinping, SUN Yang, TANG Chun, LIN Mingxiang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Dec. 1,2012 to Jan. 31, 2013)[J]. Energy Storage Science and Technology, 2013, 2(2): 112-125.
[1] Lee Y R,Woo M A,Lee K M, et al . A layer-by-layer assembly route to Mn 1/3 Co 1/3 Ni 1/3 O 2 hollow spheres with electrochemical activity[J]. Journal of Physics and Chemistry of Solids ,2012,73(12):1492-1495. [2] Liu W,Wang M,Gao X L, et al . Improvement of the high-temperature,high-voltage cycling performance of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode with TiO 2 coating[J]. Journal of Alloys and Compounds ,2012,543:181-188. [3] Liu X Z,Li H Q,Yoo E, et al . Fabrication of FePO 4 layer coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 :Towards high-performance cathode materials for lithium ion batteries [J] . Electrochimica Acta ,2012,83:253-258. [4] Park J,Kalnaus S,Han S, et al . In situ atomic force microscopy studies on lithium (de)intercalation-induced morphology changes in Li x CoO 2 micro-machined thin film electrodes[J]. Journal of Power Sources ,2013,222:417-425. [5] Cho S W,Kim G O,Ju J H, et al . X-ray absorption spectroscopy studies of the Ni ion of Li(Ni 0.8 Co 0.15 Al 0.05 ) (0.8) (Ni 0.5 Mn 0.5 ) (0.2) O 2 with a core-shell structure and LiNi 0.8 Co 0.15 Al 0.05 O 2 as cathode materials[J]. Materials Research Bulletin ,2012,47(10):2830-2833. [6] H Y S,Su W N,Chen J M, et al . Soft X-ray absorption spectroscopic and Raman studies on Li 1.2 Ni 0.2 Mn 0.6 O 2 for lithium-ion batteries[J]. Journal of Physical Chemistry C ,2012,116(48):25242-25247. [7] Liu J L,Chen L,Hou M Y, et al . General synthesis of x Li (2) MnO (3)c enter dot (1- x ) LiMn 1/3 Ni 1/3 Co 1/3 O 2 nanomaterials by a molten-salt method:Towards a high capacity and high power cathode for rechargeable lithium batteries[J]. Journal of Materials Chemistry ,2012,22(48):25380-25387. [8] Snook G A,Huynh T D,Hollenkamp A F, et al . Rapid SECM probing of dissolution of LiCoO 2 battery materials in an ionic liquid[J]. Journal of Electroanalytical Chemistry ,2012,687:30-34. [9] Dearden C,Zhu M H,Wang B B, et al . Synthesis,size reduction,and delithiation of carbonate-free nanocrystalline lithium nickel oxide[J]. Journal of Materials Science ,2013,48(4):1740-1745. [10] Titov A A,Eremenko Z V,Goryacheva E G, et al . Synthesis,structure,and some properties of LiNi 1/3 Co 1/3 Mn 1/3 O 2 [J]. Inorganic Materials ,2013,49(2):202-208. [11] Kim S,Kim C,Jhon Y I, et al . Synthesis of layered-layered 0.5Li (2) MnO (3) center dot 0.5LiCoO (2) nanocomposite electrode materials by the mechanochemical process and first principles study[J]. Journal of Materials Chemistry ,2012,22(48):25418-25426. [12] Qiao Z,Sha O,Tang Z Y, et al . Surface modification of LiNi 0.5 Mn 1.5 O 4 by LiCoO 2 /Co 3 O 4 composite for lithium-ion batteries[J]. Materials Letters ,2012,87:176-179. [13] Ati M,Sathiya M,Boulineau S, et al . Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO 4 F for use as a large-potential Fe cathode[J]. Journal of the American Chemical Society ,2012,134(44):18380-18387. [14] Habrioux A,Surble S,Berger P, et al . Nuclear microanalysis of lithium dispersion in LiFePO 4 based cathode materials for Li-ion batteries[J]. Nuclear Instruments & Methods in Physics Research Section B : Beam Interactions with Materials and Atoms ,2012,290:13-18. [15] Theil S,Fleischhammer M,Axmann P, et al . Experimental investigations on the electrochemical and thermal behavior of LiCoPO 4 -based cathode[J]. Journal of Power Sources ,2013,222:72-78. [16] Nagpure S C,Bhushan B,Babu S S. Raman and NMR studies of aged LiFePO 4 cathode[J]. Applied Surface Science ,2012,259:49-54. [17] Dimesso L,Becker D,Spanheimer C, et al . Investigation of graphitic carbon foams/LiNiPO 4 composites[J]. Journal of Solid State Electrochemistry ,2012,16(12): 3791-3798. [18] Perea A,Sougrati M T,Ionica-Bousquet C M, et al . Operando Fe-57 Mossbauer and XRD investigation of Li x Mn y Fe 1- y PO 4 /C composites ( y =0.50; 0.75)[J]. Rsc. Advances ,2012,2(25):9517-9524. [19] Devaraju M K,Tomai T,Unemoto A, et al . Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications[J]. Rsc. Advances ,2013,3(2): 608-615. [20] Liu X H,Wang J W,Huang S, et al . In situ atomic-scale imaging of electrochemical lithiation in silicon[J]. Nature Nanotechnology ,2012,7(11):749-756. [21] Nguyen H T,Zamfir M R,Duong L D, et al . Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes[J]. Journal of Materials Chemistry ,2012,22(47):24618-24626. [22] Hwa Y,Park C M,Sohn H J. Modified SiO as a high performance anode for Li-ion batteries[J]. Journal of Power Sources ,2013,222:129-134. [23] Hang T,Nara H,Yokoshima T, et al . Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries[J]. Journal of Power Sources ,2013,222:503-509. [24] Iwamura S,Nishihara H,Kyotani T. Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling[J]. Journal of Power Sources ,2013,222:400-409. [25] Dai F,Yi R,Gordin M L, et al . Amorphous Si/SiO x /SiO 2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life[J]. Rsc. Advances ,2012,2(33):12710-12713. [26] He Y,Wang Y H,Yu X Q, et al . Si-Cu thin film electrode with Kirkendall voids structure for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2012,159(12):A2076-A2081. [27] Duan B C,Wang W K,Zhao H L, et al . Nano-Sn/mesoporous carbon parasitic composite as advanced anode material for lithium-ion battery[J]. Journal of the Electrochemical Society ,2012,159(12):A2092-A2095. [28] Liu B,Abouimrane A,Ren Y, et al . New anode material based on SiO-Sn x Co y C z for lithium batteries[J]. Chemistry of Materials ,2012,24(24):4653-4661. [29] Kim M,Kim J W,Sung M S, et al . Si nanocrystallites embedded in hard TiFeSi 2 matrix as an anode material for Li-ion batteries[J]. Journal of Electroanalytical Chemistry ,2012,687:84-88. [30] Kushima A,Huang J Y,Li J. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ tem tensile experiments[J]. Acs. Nano ,2012,6(11):9425-9432. [31] Ishii Y,Okamura K,Matsushita T, et al . Origin of high power performance of mesoporous carbon-TiO 2 (B) nanocomposite electrodes: An in situ synchrotron X-ray diffraction study of TiO 2 (B) electrode upon lithium insertion[J]. Materials Express ,2012,2(1):23-36. [32] Kim J C,Hwang I S,Seo S D, et al . Superior long-term cycling stability of SnO 2 nanoparticle/multiwalled carbon nanotube heterostructured electrodes for Li-ion rechargeable batteries[J]. Nanotechnology ,2012,23(46):465402. [33] Wang J Z,Du N,Wu H, et al . Order-aligned Mn 3 O 4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries [J]. Journal of Power Sources ,2013,222:32-37. [34] Jia X L,Chen Z,Cui X, et al . Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries[J]. Acs. Nano ,2012,6(11):9911-9919. [35] Wang C D,Zhang Q M,Wu Q H, et al . Facile synthesis of laminate-structured graphene sheet-Fe 3 O 4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries[J]. Rsc. Advances ,2012,2(28):10680-10688. [36] Chen P,Guo L,Wang Y. Graphene wrapped snco nanoparticles for high-capacity lithium ion storage[J]. Journal of Power Sources ,2013,222:526-532. [37] Marino C,Sougrati M T,Gerke B, et al . Role of structure and interfaces in the performance of TiSnSb as an electrode for Li-ion batteries[J]. Chemistry of Materials ,2012,24(24):4735-4743. [38] Shen L F,Uchaker E,Zhang X G, et al . Hydrogenated Li 4 Ti 5 O 12 nanowire arrays for high rate lithium ion batteries[J]. Advanced Materials ,2012,24(48):6502-6506. [39] Wu C Y,Wang Y X,Xie J, et al . Electrochemical performance of Li 4 Ti 5 O 12 /carbon nanofibers composite prepared by an in situ route for Li-ion batteries[J]. Journal of Solid State Electrochemistry ,2012,16(12):3915-3921. [40] Song H,Yun S W,Chun H H, et al . Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li 4 Ti 5 O 12 negative-electrode materials for high-rate Li-ion batteries[J]. Energy & Environmental Science ,2012,5(12):9903-9913. [41] Prikhodchenko P V,Gun J,Sladkevich S, et al . Conversion of hydroperoxoantimonate coated graphenes to Sb 2 S 3 @graphene for a superior lithium battery anode[J]. Chemistry of Materials ,2012,24(24):4750-4757. [42] Yuan F W,Yang H J,Tuan H Y. Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries:The role of chemical surface functionalization[J]. Acs. Nano ,2012,6(11):9932-9942. [43] Chen Y M,Lu Z G,Zhou L M, et al . In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries[J]. Nanoscale ,2012,4(21):6800-6805. [44] Choi S,Lee J I,Park S. Patterning of electrodes for mechanically robust and bendable lithium-ion batteries[J]. Journal of Materials Chemistry ,2012,22(42):22366-22369. [45] Matsumoto K,Endo T,Katsuda K, et al . Synthesis of polycarbosilanes having a five-membered cyclic carbonate structure and their application to prepare gel polymer electrolytes for lithium ion batteries[J]. Journal of Polymer Science Part A : Polymer Chemistry ,2012,50(24):5161-5169. [46] Zhu Y,LI Y,Bettge M, et al . Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells[J]. Journal of the Electrochemical Society ,2012,159(12):A2109-A2117. [47] Aydin H,Senel M,Bozkurt A. PAMAM type dendritic electrolytes for lithium ion battery applications[J]. Solid State Ionics ,2012,226:1-6. [48] Basile A,Bhatt A I,O'mullane A P. A combined scanning electron micrograph and electrochemical study of the effect of chemical interaction on the cyclability of lithium electrodes in an ionic liquid electrolyte[J]. Australian Journal of Chemistry ,2012,65(11):1534-1541. [49] Gellert M,Gries K I,Yada C, et al . Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: Microstructure and nonlinear ion transport properties[J]. Journal of Physical Chemistry C ,2012,116(43):22675-22678. [50] Henderson W A,Seo D M,Zhou Q, et al . An alternative ionic conductivity mechanism for plastic crystalline salt-lithium salt electrolyte mixtures[J]. Advanced Energy Materials ,2012,2(11):1343-1350. [51] Ounn R P,Kafle J,Krause F C, et al . Electrochemical analysis of Li-ion cells containing triphenyl phosphate[J]. Journal of the Electrochemical Society ,2012,159(12):A2100-A2108. [52] Takeuchi S,Yano S,Fukutsuka T, et al . Electrochemical intercalation/de-intercalation of lithium ions at graphite negative electrode in TMP-based electrolyte solution[J]. Journal of the Electrochemical Society ,2012,159(12):A2089-A2091. [53] Xu M Q,Lu D S,Garsuch A, et al . Improved performance of LiNi 0.5 Mn 1.5 O 4 cathodes with electrolytes containing dimethylmethylphosphonate (DMMP)[J]. Journal of the Electrochemical Society ,2012,159(12):A2130-A2134. [54] Cresce A V,Borodin O,Xu K. Correlating Li + solvation sheath structure with interphasial chemistry on graphite[J]. Journal of Physical Chemistry C ,2012,116(50):26111-26117. [55] Kim S K,Kim D G,Lee A, et al . Organic/inorganic hybrid block copolymer electrolytes with nanoscale ion-conducting channels for lithium ion batteries[J]. Macromolecules ,2012,45(23):9347-9356. [56] Ong S P,Mo Y F,Richards W D, et al . Phase stability,electrochemical stability and ionic conductivity of the Li 10+/- 1 MP 2 X 12 (M = Ge,Si,Sn,Al or P,and X = O,S or Se) family of superionic conductors[J]. Energy & Environmental Science ,2013,6(1):148-156. [57] Tenhaeff W E,Perry K A,Dudney N J. Impedance characterization of Li ion transport at the interface between laminated ceramic and polymeric electrolytes[J]. Journal of the Electrochemical Society ,2012,159(12):A2118-A2123. [58] Leggesse E G,Jiang J C. Theoretical study of the reductive decomposition of ethylene sulfite:A film-forming electrolyte additive in lithium ion batteries[J]. Journal of Physical Chemistry A ,2012,116(45):11025-11033. [59] Hassoun J,Jung H G,Lee D J, et al . A metal-free,lithium-ion oxygen battery:A step forward to safety in lithium-air batteries[J]. Nano Letters ,2012,12(11):5775-5779. [60] Lim H,Yilmaz E,Byon H R. Real-time XRD studies of LiO 2 electrochemical reaction in nonaqueous lithium-oxygen battery[J]. Journal of Physical Chemistry Letters ,2012,3(21):3210-3215. [61] Mccloskey B D,Scheffler R,Speidel A, et al . On the mechanism of nonaqueous LiO 2 electrochemistry on C and its kinetic overpotentials:Some implications for Li-air batteries[J]. Journal of Physical Chemistry C ,2012,116(45):23897-23905. [62] Cao Y,Wei Z K,He J, et al . alpha-MnO 2 nanorods grown in situ on graphene as catalysts for LiO 2 batteries with excellent electrochemical performance[J]. Energy & Environmental Science ,2012,5(12):9765-9768. [63] Yang Y,Shi M,Li Y S, et al . MnO 2 -graphene composite air electrode for rechargeable Li-air batteries[J]. Journal of the Electrochemical Society ,2012,159(12):A1917-A1921. [64] Oh S H,Black R,Pomerantseva E, et al . Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O 2 batteries[J]. Nature Chemistry ,2012,4(12):1004-1010. [65] Thotiyl M M O,Freunberger S A,Peng Z Q, et al . The carbon electrode in nonaqueous LiO 2 cells[J]. Journal of the American Chemical Society ,2013,135(1):494-500. [66] Fu Y Z,Su Y S,Manthiram A. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries[J]. Acs. Applied Materials & Interfaces ,2012,4(11):6046-6052. [67] Cai K P,Song M K,Cairns E J, et al . Nanostructured Li 2 S-C composites as cathode material for high-energy lithium/sulfur batteries[J]. Nano Letters ,2012,12(12):6474-6479. [68] Duan L,Lu J C,Liu W Y, et al . Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium-sulfur batteries[J]. Colloids and Surfaces A : Physicochemical and Engineering Aspects ,2012,414:98-103. [69] Zhang C F,Wu H B,Yuan C Z, et al . Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition ,2012,51(38):9592-9595. [70] Lee K T,Black R,Yim T, et al . Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes[J]. Advanced Energy Materials ,2012,2(12):1490-1496. [71] Eddahech A,Briat O,Woirgard E, et al . Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications[J]. Microelectronics Reliability ,2012,52(9-10):2438-2442. [72] Marinaro M,Mancini M,Nobili F, et al . A newly designed Cu/super-P composite for the improvement of low-temperature performances of graphite anodes for lithium-ion batteries[J]. Journal of Power Sources ,2013,222:66-71. [73] Dolotko O,Senyshyn A,Muhlbauer M J, et al . Fatigue process in Li-ion cells:An in situ combined neutron diffraction and electrochemical study[J]. Journal of the Electrochemical Society ,2012,159(12):A2082-A2088. [74] Xia L,Wang D D,Yang H X, et al . An electrolyte additive for thermal shutdown protection of Li-ion batteries[J]. Electrochemistry Communications ,2012,25:98-100. [75] Lu X,Sun Y,Jian Z L, et al . New insight into the atomic structure of electrochemically delithiated O 3 -Li (1- x ) CoO 2 (0≤ x ≤0.5) nanoparticles[J]. Nano Letters ,2012,12(12):6192-6197. [76] Ferguson T R,Bazant M Z. Nonequilibrium thermodynamics of porous electrodes[J]. Journal of the Electrochemical Society ,2012,159(12):A1967-A1985. [77] Godbole V A,Hess M,Villevieille C, et al . Circular in situ neutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries[J]. Rsc. Advances ,2013,3(3):757-763. [78] Brown D,Landers R G. Control oriented thermal modeling of lithium ion batteries from a first principle model via model reduction by the global arnoldi algorithm[J]. Journal of the Electrochemical Society ,2012,159(12):A2043-A2052. [79] Gachot G,Grugeon S,Eshetu G G, et al . Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta ,2012,83:402-409. [80] Ganesh P,Kent P R C,Jiang D E. Solid-electrolyte interphase formation and electrolyte reduction at Li-ion battery graphite anodes:Insights from first-principles molecular dynamics[J]. Journal of Physical Chemistry C ,2012,116(46):24476-24481. [81] Koyama Y,Arai H,Tanaka I, et al . Defect chemistry in layered LiMO 2 (M = Co,Ni,Mn,and Li 1/3 Mn 2/3 ) by first-principles calculations[J]. Chemistry of Materials ,2012,24(20):3886-3894. [82] Lau K C,Assary R S,Redfern P, et al . Electronic structure of lithium peroxide clusters and relevance to lithium-air batteries[J]. Journal of Physical Chemistry C ,2012,116(45):23890-23896. [83] Ling C,Mizuno F. Capture lithium in alpha MnO 2 :Insights from first principles[J]. Chemistry of Materials ,2012,24(20):3943-3951. [84] Oishi M,Fujimoto T,Takanashi Y, et al . Charge compensation mechanisms in Li 1.16 Ni 0.15 Co 0.19 Mn 0.50 O 2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure[J]. Journal of Power Sources ,2013,222:45-51. [85] Sun C H,Searles D J. Lithium storage on graphdiyne predicted by DFT calculations[J]. Journal of Physical Chemistry C ,2012,116(50):26222-26226. [86] Wu H,Cummings O T,Wick C D. Computational investigation on the effect of alumina hydration on lithium ion mobility in poly(ethylene oxide) LiClO 4 electrolytes[J]. Journal of Physical Chemistry B ,2012,116(51):14922-14932. [87] Du J C,Chen C H. Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals[J]. Journal of Non-Crystalline Solids ,2012,358(24):3531-3538. [88] Gallagher K G,Dees D W,Jansen A N, et al . A volume averaged approach to the numerical modeling of phase-transition intercalation electrodes presented for Li x C 6 [J]. Journal of the Electrochemical Society ,2012,159(12):A2029-A2037. [89] Liivat A. Structural changes on cycling Li 2 FeSiO 4 polymorphs from DFT calculations[J]. Solid State Ionics ,2012,228:19-24. [90] Sun Y,Lu X,Xiao R J, et al . Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions[J]. Chemistry of Materials ,2012,24(24):4693-4703. [91] Yamakawa S,Yamasaki H,Koyama T, et al . Numerical study of Li diffusion in polycrystalline LiCoO 2 [J]. Journal of Power Sources ,2013,223:199-205. [92] Clark J M,Nishimura S,Yamada A, et al . High-voltage pyrophosphate cathode:Insights into local structure and lithium-diffusion pathways[J]. Angewandte Chemie-International Edition ,2012,51(52):13149-13153. [93] Geng W T,Ping D H,Nara J, et al . Formation of perpendicular graphene nanosheets on LiFePO 4 :A first-principles characterization[J]. Journal of Physical Chemistry C ,2012,116(33):17650-17656. [94] Ryou M H,Lee Je-Nam,Lee Dong Jin,Kim Wan-Keun,Jeong You Kyeong,Choi Jang Wook,Park Jung-Ki,Lee Yong Min . Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer[J]. Electrochim Acta ,2012,83:259-263. [95] Nagao M,Imade Y,Narisawa H, et al . All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LiSiCoN solid electrolyte[J]. Journal of Power Sources ,2013,222:237-242. [96] Das S,Bhattacharyya A J. Time-temperature scaling of conductivity spectra of organic plastic crystalline conductors[J]. Journal of Physical Chemistry Letters ,2012,3(23):3550-3554. [97] Nokami T,Matsuo T,Inatomi Y, et al . Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity[J]. Journal of the American Chemical Society ,2012,134(48):19694-19700. [98] Brushett F R,Vaughey J T,Jansen A N. An all-organic non-aqueous lithium-ion redox flow battery[J]. Advanced Energy Materials ,2012,2(11): 1390-1396. [99] Mayers M Z,Kaminski J W,Miller T F. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. Journal of Physical Chemistry C ,2012,116(50):26214-26221. [100] La Mantia F,Huggins R A,Cui Y. Oxidation processes on conducting carbon additives for lithium-ion batteries[J]. Journal of Applied Electrochemistry ,2013,43(1):1-7. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||