储能科学与技术 ›› 2013, Vol. 2 ›› Issue (3): 250-266.doi: 10.3969/j.issn.2095-4239.2013.03.010
高健, 吕迎春, 李泓
收稿日期:
2013-04-15
修回日期:
2013-04-18
出版日期:
2013-06-19
发布日期:
2013-06-19
通讯作者:
李泓,研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@iphy.ac.cn.
作者简介:
高健(1987--),女,博士研究生,研究方向为锂离子电池固体电解质,E-mail:mingze675@126.com
基金资助:
GAO Jian, LV Yingchun, LI Hong
Received:
2013-04-15
Revised:
2013-04-18
Online:
2013-06-19
Published:
2013-06-19
摘要: 相变是电池材料基础研究中的重要问题.对材料相变的准确认识,有利于合成制备过程中获得晶体结构与组成符合设计要求的目标材料.了解电解质中的相变可以知道其使用的安全稳定条件,利用其相变性质发展新的电解质材料.相的组分与相变趋势可以由相图简明直观地展示出来.本文小结了与锂离子电池相关的相变与相图研究.
中图分类号:
高健, 吕迎春, 李泓. 锂电池基础科学问题(III)----相图与相变[J]. 储能科学与技术, 2013, 2(3): 250-266.
GAO Jian, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (III) --Phase transition and phase diagram[J]. Energy Storage Science and Technology, 2013, 2(3): 250-266.
[1] Liu Changjun(刘长俊). 相律及相图热力学[M]. Beijing:Higher Education Press,1995. [2] Grey C P,Dupré N. NMR studies of cathode materials for lithium-ion rechargeable batteries[J]. Chem. Rev. ,2004,104(10):4493-4512. [3] Sugiyama J,Mukai K,Nozaki H, et al. Antiferromagnetic spin structure and lithium ion diffusion in Li 2 MnO 3 probed by µ + SR[J]. Phys. Rev. B ,2013,87(2). doi:10.1103/PhysRevB.87.024409. [4] Yao J,Konstantinov K,Wang G X, et al . Electrochemical and magnetic characterization of LiFePO 4 and Li 0.95 Mg 0.05 FePO 4 cathode materials[J]. J. Solid State Electr. ,2007,11(2):177-185. [5] Ramzan M,Ahuja R. Ferromagnetism in the potential cathode material LiNaFePO 4 F[J]. Europhys. Lett. ,2009,87(1). doi:10.1209/ 0295-5075/87/18001. [6] Li G H,Ikuta H,Uchida T, et al . The spinel phases LiM y Mn 2- y O 4 (M=Co,Cr,Ni)as the cathode for rechargeable lithium batteries[J]. J. Electrochem. Soc. ,1996,143(1):178-182. [7] Ivancevic V G,Ivancevic T T. Complex Nonlinearity:Chaos,Phase Transitions,Topology Change and Path Integrals (Understanding Complex Systems)[M]. Berlin:Springer -Verlag Berlin,2008. [8] Yu Lu(于渌),Hao Bolin(郝柏林). 相变和临界现象[M]. Beijing:Science Press,1984. [9] Cheng Xiaonong(程晓农),Dai Qixun(戴起勋),Shao Honghong(邵红红). 材料固态相变与扩散[M]. Beijing:Chemical Industry Press,2006. [10] Shimura T,Murahashi D,Iwahara H,Yogo T. Lithium ionic conduction in LiAlO 2 -based oxides at elevated temperatures[C]// Proceedings of the 8th Asian Conference,Singapore:World Scientific Publishing Co. Pte. Ltd.,2002:613-620. [11] Ceder G,Chiang Y M,Sadoway D R, et al . Identification of cathode materials for lithium batteries guided by first-principles calculations[J]. Nature ,1998,392(6677):694-696. [12] Zhang Jin(张进),Cao Gaoshao(曹高劭),Zhao Xinbing(赵新兵), et al . Electrochemical properties of α-LiAlO 2 coated LiNi 0.4 Co 0.2 Mn 0.4 O 2 by solid reaction[J]. Chinese Journal of Inorganic Chemistry (无机化学学报),2008,24(3):94-100. [13] Sun Y C,Wang Z X,Chen L Q, et al . Improved electrochemical performances of surface-modified spinel LiMn 2 O 4 for long cycle life lithium-ion batteries[J]. J. Electrochem. Soc. ,2003,150(10):A1294-A1298. [14] Cao H,Xia B J,Zhang Y, et al . LiAlO 2 -coated LiCoO 2 as cathode material for lithium ion batteries[J]. Solid State Ionics ,2005,176(9-10):911-914. [15] Kim Y,Kim H S,Martin S W. Synthesis and electrochemical characteristics of Al 2 O 3 -coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials for lithium ion batteries[J]. Electrochem. Acta. ,2006,52(3):1316-1322. [16] Kim H S,Kim Y,Kim S I, et al . Enhanced electrochemical properties of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode material by coating with LiAlO 2 nanoparticles[J]. J. Power Sources ,2006,161(1):623-627. [17] Lei L,He D W,Zou Y T, et al . Phase transitions of LiAlO 2 at high pressure and high temperature[J]. J. Solid State Chem. ,2008,181(8):1810-1815. [18] Marezio M,Remeika J P. High-pressure synthesis and crystal structure of Alpha-LiAlO 2 [J]. J. Chem. Phys. ,1966,44(8):3143-3144. [19] Li X J,Kobayashi T,Zhang F X, et al . A new high-pressure phase of LiAlO 2 [J]. J. Solid State Chem. ,2004,177(6):1939-1943. [20] Marezio M,Remeika J P. Polymorphism of LiMO 2 compounds and high-pressure single-crystal synthesis of LiBO 2 [J]. J. Chem. Phys. ,1966,44(9):3348-3353. [21] Chang C H,Margrave J L. High-pressure-high-temperature syntheses.3. Direct syntheses of new high-pressure forms of LiAlO 2 and LiGaO 2 and polymorphism in LiMO 2 compounds (M=B, Al, Ga)[J]. J. Am. Chem. Soc. ,1968,90(8):2020-2022. [22] Danek V,Tarniowy M,Suski L. Kinetics of the alpha gamma phase transformation in LiAlO 2 under various atmospheres within the 1073-1173 K temperatures range[J]. J. Mater. Sci. ,2004,39(7):2429-2435. [23] Rasneur B,Charpin J. Chemical-properties of lithium ceramics - reactivity with water and water-vapor[J]. J. Nucl. Mater. ,1988,155:461-465. [24] Finn P A. Effects of different environments on the thermal-stability of powdered samples of LiAlO 2 [J]. J. Electrochem. Soc. ,1980,127(1):236-238. [25] Tomimatsu N,Ohzu H,Akasaka Y, et al . Phase stability of LiAlO 2 in molten carbonate[J]. J. Electrochem. Soc. ,1997,144(12):4182-4186. [26] Ribeiro R A,Silva G G,Mohallem N D S. The influences of heat treatment on the structural properties of lithium aluminates [J]. J. Phys. Chem. Solids ,2001,62(5):857-864. [27] Byker H J,Eliezer I,Ellezer N, et al . Calculation of a phase-diagram for the LiO 0.5 -AlO 1.5 system[J]. J. Phys. Chem-Us ,1979,83(18):2349-2355. [28] Isupov V P,Eremina N V. Effect of mechanical activation of Al(OH) 3 on its reaction with Li 2 CO 3 [J]. Inorg. Mater. ,2012,48(9):918-924. [29] Luo C,Martin M. Stability and defect structure of spinels Li 1+ x Mn 2- x O 4- δ :I. In situ investigations on the stability field of the spinel phase[J]. J. Mater. Sci. ,2007,42(6):1955-1964. [30] Kelder E,Jak M,Schoonman J, et al . Quality control of Li 1+ δ Mn 2- δ O 4 spinels with their impurity phases by Jaeger and Vetter titration[J]. J. Power Sources ,1997,68(2):590-592. [31] Thackeray M,Mansuetto M,Dees D, et al . The thermal stability of lithium-manganese-oxide spinel phases[J]. Materials Research Bulletin ,1996,31(2):133-1340. [32] Boulineau A,Croguennec L,Delmas C, et al . Thermal stability of Li 2 MnO 3 :From localized defects to the spinel phase[J]. Dalton Transactions ,2012,41(5):1574-1581. [33] 谢彬. New electrolytes for Li-ion batteries [D]. Beijing:Institute of physics,Chinese Academy of Sciences,2008. [34] Liang H Y,Li H,Wang Z X, et al . New binary room-temperature molten salt electrolyte based on urea and LiTFSI[J]. J. Phys. Chem. B ,2001,105(41):9966-9969. [35] Hu Y S,Wang Z X,Huang X J, et al . Physical and electrochemical properties of new binary room-temperature molten salt electrolyte based on LiBETI and acetamide[J]. Solid State Ionics ,2004,175(1-4):277-280. [36] Hu Y S,Wang Z X,Li H, et al . Ionic conductivity and association studies of novel RTMS electrolyte based on LiTFSI and acetamide[J]. J. Electrochem. Soc. ,2004,151(9):A1424-A1428. [37] Xie B,Li L F,Li H, et al. A preliminary study on a new LiBOB/acetamide solid phase transition electrolyte[J]. Solid State Ionics ,2009,180(9-10):688-692. [38] He X M,Pu W H,Wang L, et al . Plastic crystals:An effective ambient temperature all-solid-state electrolyte for lithium batteries[J]. Prog. Chem. ,2006,18(1):24-29. [39] Timmermans J. Plastic crystals A historical review[J]. J. Phys. Chem. Solids ,1961,18(1):1-8. [40] Post B. The cubic form of carbon tetrachloride[J]. Acta Crystallogr ,1959,12(4):349. [41] Staveley L A. Phase transitions in plastic crystals[J]. Annu. Rev. Phys. Chem. ,1962,13:351-368. [42] Cooper E I,Angell C A. Ambient-temperature plastic crystal fast ion conductors(plicfics)[J]. Solid State Ionics ,1986,18-19:570-576. [43] Chandra D,Helms J H,Majumdar A. Ionic-conductivity in ordered and disordered phases of plastic crystals[J]. J. Electrochem. Soc. ,1994,141(7):1921-1927. [44] Hattori M,Fukada S I,Nakamura D, et al . Studies of the anisotropic self-diffusion and reorientation of butylammonium cations in the rotator phase of butylammonium chloride using H-1 magnetic-resonance,electrical-conductivity and thermal measurements[J]. J. Chem. Soc. Faraday T. ,1990,86(22):3777-3783. [45] Ishida H,Furukawa Y,Kashino S, et al . Phase transitions and ionic motions in solid trimethylethylammonium iodide studied by H-1 and I-127 NMR,electrical conductivity,X-ray diffraction,and thermal analysis[J]. Ber Bunsen Phys. Chem. ,1996,100(4):433-439. [46] Tanabe T,Nakamura D,Ikeda R. Novel ionic plastic phase of [(CH 3 ) 4 N]SCN obtainable above 455 K studied by proton magnetic- resonance,electrical-conductivity and thermal measurements[J]. J. Chem. Soc. Faraday T. ,1991,87(7):987-990. [47] Shimizu T,Tanaka S,Onodayamamuro N, et al . New rotator phase revealed in di-n-alkylammonium bromides studied by solid-state NMR,powder XRD,electrical conductivity and thermal measurements[J]. J. Chem. Soc. Faraday T. ,1997,93(2):321-326. [48] Macfarlane D R,Meakin P,Sun J, et al . Pyrrolidinium imides:A new family of molten salts and conductive plastic crystal phases[J]. J. Phys. Chem. B ,1999,103(20):4164-4170. [49] Long S,Macfarlane D R,Forsyth M. Fast ion conduction in molecular plastic crystals[J]. Solid State Ionics ,2003,161(1-2):105-112. [50] Long S,Macfarlane D R,Forsyth M. Ionic conduction in doped succinonitrile[J]. Solid State Ionics ,2004,175(1-4):733-738. [51] Alarco P J,Abu-lebdeh Y,Abouimrane A, et al. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors[J]. Nat. Mater. ,2004,3(7):476-481. [52] Macfarlane D R,Huang J H,Forsyth M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries[J]. Nature ,1999,402(6763):792-794. [53] Goodenough J B,Hong H Y P,Kafalas J A. Fast Na + -ion transport in skeleton structures[J]. Materials Research Bulletin ,1976,11(2):203-220. [54] Catti M,Stramare S,Ibberson R. Lithium location in NASICON-type Li + conductors by neutron diffraction I:Triclinic alpha-LiZr 2 (PO4) 3 [J]. Solid State Ionics ,1999,123(1-4):173-180. [55] Catti M,Stramare S. Lithium location in NASICON-type Li + conductors by neutron diffraction II:Rhombohedral alpha-LiZr 2 (PO 4 ) 3 at T =423 K[J]. Solid State Ionics ,2000,136:489-494. [56] Sudreau F,Petit D,Boilot J P. Dimorphism,phase-transitions,and transport-properties in LiZr 2 (PO 4 ) 3 [J]. J. Solid State Chem. ,1989,83(1):78-90. [57] Petie D,Colomban P,Collin G, et al . Fast ion-transport in LiZr 2 (PO 4 ) 3 - structure and conductivity[J]. Materials Research Bulletin ,1986,21(3):365-371. [58] Casciola M,Costantino U,Merlini L, et al . Preparation,structural characterization and conductivity of LiZr 2 (PO 4 ) 3 [J]. Solid State Ionics ,1988,26(3):229-235. [59] Liang Jingkui(梁敬魁). 相图与相结构:相图的理论,实践和应用[M]. Beijing:Science Press,1993. [60] Atkins P,de Paula J. Atkins' Physical Chemistry[M]. 8th. edition. Oxford:Oxford University Press,2006. [61] Zeng Yanwei(曾燕伟). Fundamentals of Inorganic Materials Science[M]. Wuhan:Wuhan Technology Press(武汉理工大学出版社),2012. [62] Lu Xueshan(陆学善). 相图与相变[M]. Hefei:Press of University of Science and Technology of China,1990. [63] Vandermarel C,Vinke G J B,Vanderlugt W. The phase-diagram of the system lithium-silicon[J]. Solid State Communications ,1985,54(11):917-919. [64] Chevrier V L,Zwanziger J W,Dahn J R. First principles study of Li-Si crystalline phases:Charge transfer,electronic structure,and lattice vibrations[J]. J. Alloy Compd. ,2010,496(1-2):25-36. [65] Zhou G W,Li H,Sun H P, et al . Controlled Li doping of Si nanowires by electrochemical insertion method[J]. Appl. Phys. Lett. ,1999,75(16):2447-2449. [66] Li H,Huang X J,Chen L Q, et al . The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics ,2000,135(1-4):181-191. [67] Key B,Bhattacharyya R,Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries [J]. J. Am. Chem. Soc. ,2009,131(26):9239-9249. [68] Hatchard T D,Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. J. Electrochem. Soc. ,2004,151(6):A838-A842. [69] Padhi A K,Nanjundaswamy K S,Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J. Electrochem. Soc. ,1997,144(4):1188-1194. [70] Delacourt C,Poizot P,Tarascon J M, et al. The existence of a temperature-driven solid solution in LixFePO 4 for 0 ≤ x ≤ 1[J]. Nat. Mater. ,2005,4(3):254-260. [71] Dodd J L,Yazami R,Fultz B. Phase diagram of Li( x )FePO 4 [J]. Electrochemical and Solid State Letters ,2006,9(3):A151-A155. [72] Meethong N,Kao Y H,Speakman S A, et al . Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties[J]. Adv. Funct. Mater. ,2009,19(7):1060-1070. [73] Thackeray M M. Manganese oxides for lithium batteries[J]. Prog. Solid State Ch. ,1997,25(1-2):1-71. [74] Gummow R J,Dekock A,Thackeray M M. Improved capacity retention in rechargeable 4 V lithium lithium manganese oxide (spinel)cells[J]. Solid State Ionics ,1994,69(1):59-67. [75] Thackeray M M,Mansuetto M F,Dees D W, et al . The thermal stability of lithium-manganese-oxide spinel phases[J]. Materials Research Bulletin ,1996,31(2):133-140. [76] Thackeray M M,Johnson C S,Vaughey J T, et al . Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries[J]. J. Mater. Chem. ,2005,15(23):2257-2267. [77] Kim J S,Johnson C S,Vaughey J T, et al . Electrochemical and structural properties of x Li 2 M'O 3 center dot(1- x )LiMn 0.5 Ni 0.5 O 2 eIectrodes for lithium batteries (M' = Ti,Mn,Zr; 0 ≤ x ≤ 0.3)[J]. Chem. Mater. ,2004,16(10):1996-2006. [78] Zhang Lianqi(张联齐),Xiao Chengwei(肖成伟),Yang Ruijuan(杨瑞娟). Ordered/disordered rocksalt structured Li 1+ x M 1- x O 2 cathode materials for Li-ion battery[J]. Progress in Chemistry ,2011,23(2-3):410-417. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[6] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[7] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[12] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[13] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[14] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[15] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||