储能科学与技术 ›› 2013, Vol. 2 ›› Issue (3): 237-249.doi: 10.3969/j.issn.2095-4239.2013.03.009
唐代春, 董金平, 孙洋, 林明翔, 徐凯琪, 闫勇, 陈彬, 王昊, 黄学杰
收稿日期:
2013-04-16
出版日期:
2013-06-19
发布日期:
2013-06-19
通讯作者:
黄学杰,研究员,博士生导师,主要研究方向为锂二次电池及关键材料,E-mail:xjhuang@iphy.ac.cn.
作者简介:
唐代春(1985--),男,博士研究生,研究方向为锂离子电池正极材料
TANG Daichun, DONG Jinping, SUN Yang, LIN Mingxiang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, HUANG Xuejie
Received:
2013-04-16
Online:
2013-06-19
Published:
2013-06-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science 从2013年2月1日至2013年3月31日上线的锂电池研究论文,共有924篇,选择其中100篇加以评论.层状氧化物,高压尖晶石和聚阴离子正极材料继续受到关注.高容量的Si基负极材料一直是研究的热点,然而其体积膨胀,长循环效率低的缺点尚未被克服.本期有多篇电解液添加剂的研究论文给出了较好的结果.具有高能 量密度的Li-O2和Li-S电池仍是研究热点.除了这些以材料为主的研究之外,有多篇涉及电池预期寿命估计和电池失效机理分析的论文,还有一个特点是SEI形成机理和电池内部应力分析的理论计算论文开始多起来.
中图分类号:
唐代春, 董金平, 孙洋, 林明翔, 徐凯琪, 闫勇, 陈彬, 王昊, 黄学杰. 锂电池百篇论文点评(2013.2.1--2013.3.31)[J]. 储能科学与技术, 2013, 2(3): 237-249.
TANG Daichun, DONG Jinping, SUN Yang, LIN Mingxiang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Feb. 1,2013 to Mar. 31,2013)[J]. Energy Storage Science and Technology, 2013, 2(3): 237-249.
[1] Sugiyama J,Mukai K,Nozaki H, et al . Antiferromagnetic spin structure and lithium ion diffusion in Li 2 MnO 3 probed by μ + SR[J]. Physical Review B ,2013,87(2):66-76. [2] Cook J B,Kim C,Xu L P, et al . The effect of Al substitution on the chemical and electrochemical phase stability of orthorhombic LiMnO 2 [J]. Journal of the Electrochemical Society ,2013,160(1):A46-A52. [3] Tavakoli A H,Kondo H,Ukyo Y, et al . Stabilizing effect of Mg on the energetics of the Li(Ni,Co,Al)O 2 cathode material for lithium ion batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A302-A305. [4] Noh M,Cho J.Optimized synthetic conditions of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials for high rate lithium batteries via co-precipitation method[J]. Journal of the Electrochemical Society ,2013,160(1):A105-A111. [5] Noh H J,Myung S T,Jung H G, et al . Formation of a continuous solid-solution particle and its application to rechargeable lithium batteries[J]. Advanced Functional Materials ,2013,23(8):1028-1036. [6] Jung Y S,Lu P,Cavanagh A S, et al . Unexpected improved performance of ALD coated LiCoO 2 /graphite Li-ion batteries[J]. Advanced Energy Materials ,2013,3(2):213-219. [7] Fu F,Xu G L,Wang Q, et al . Synthesis of single crystalline hexagonal nanobricks of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery[J]. Journal of Materials Chemistry A ,2013,1(12):3860-3864. [8] Nam K W,Bak S M,Hu E Y, et al . Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials ,2013,23(8):1047-1063. [9] Yabuuchi N,Yamamoto K,Yoshii K, et al . Structural and electrochemical characterizations on Li 2 MnO 3 -LiCoO 2 -LiCrO 2 system as positive electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,2013,160(1):A39-A45. [10] Kim D,Sandi G,Croy J R, et al . Composite 'layered-layered-spinel' cathode structures for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(1):A31-A38. [11] Amalraj F,Talianker M,Markovsky B, et al . Study of the lithium-rich integrated compound x Li(2)MnO(3) center dot (1- x )LiMO 2 ( x around 0.5; M = Mn,Ni,Co; 2∶2∶1)and its electrochemical activity as positive electrode in lithium cells[J]. Journal of the Electrochemical Society ,2013,160(2):A324-A337. [12] Jafta C J,Ozoemena K I,Mathe M K, et al . Synthesis,characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode material for lithium ion battery[J]. Electrochimica Acta ,2012,85(15):411-422. [13] Jiang Y,Yang Z,Luo W., et al . Hollow 0.3Li(2)MnO(3)center dot 0.7LiNi(0.5)Mn(0.5)O(2) microspheres as a high-performance cathode material for lithium-ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(8):2954-2960. [14] Gu M,Belharouak I,Zheng J M, et al . Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. Acs Nano ,2013,7(1):760-767. [15] Shi S J,Tu J P,Tang Y Y, et al . Enhanced cycling stability of Li (Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 )O 2 by surface modification of MgO with melting impregnation method[J]. Electrochimica Acta ,2013,88:671-679. [16] Wang D P,Belharouak I,Zhou G W, et al . Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries[J]. Advanced Functional Materials ,2013,23(8):1070-1075. [17] Chemelewski K R,Shin D W,Li W, et al . Octahedral and truncated high-voltage spinel cathodes:The role of morphology and surface planes in electrochemical properties[J]. Journal of Materials Chemistry A ,2013,1(10):3347-3354. [18] Fang X,Ge M Y,Rong J P, et al . Graphene-oxide-coated LiNi 0.5 Mn 1.5 O 4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life[J]. Journal of Materials Chemistry A ,2013,1(12):4083-4088. [19] Schroeder M,Glatthaar S,Gesswein H, et al . Post-doping via spray-drying:A novel sol-gel process for the batch synthesis of doped LiNi 0.5 Mn 1.5 O 4 spinel material[J]. Journal of Materials Science ,2013,48(9):3404-3414. [20] Lee E S,Manthiram A. Influence of doping on the cation ordering and charge-discharge behavior of LiMn 1.5 Ni 0.5- x M x O 4 (M = Cr,Fe,Co,and Ga) spinels between 5.0 and 2.0 V[J]. Journal of Materials Chemistry A ,2013,1(9):3118-3126. [21] Cuisinier M,Dupre N,Martin J F, et al . Evolution of the LiFePO 4 positive electrode interface along cycling monitored by MAS NMR[J]. Journal of Power Sources ,2013,224:50-58. [22] Omenya F,Chernova N A,Zhang R B, et al . Why substitution enhances the reactivity of LiFePO 4 [J]. Chemistry of Materials ,2013, 25(1):85-89. [23] Gueguen A,Castro L,Dedryvere R, et al . The electrode/electrolyte reactivity of LiFe 0.33 Mn 0.67 PO 4 compared to LiFePO 4 [J]. Journal of the Electrochemical Society ,2013,160(2):A387-A393. [24] Wang J J,Yang J L,Zhang Y, et al . Interaction of carbon coating on LiFePO 4 :A local visualization study of the influence of impurity phases[J]. Advanced Functional Materials ,2013,23(7):806-814. [25] Rasanen S,Karppinen M. Thermogravimetric study of water-based LiFePO 4 composite electrode powders[J]. Thermochimica Acta ,2012,547:126-129. [26] Choi I,Lee M J,Oh S M, et al . Fading mechanisms of carbon-coated and disproportionated Si/SiO x negative electrode (Si/SiO x /C) in Li-ion secondary batteries:Dynamics and component analysis by TEM[J]. Electrochimica Acta ,2012,85(15):369-376. [27] Dogan F,Joyce C,Vaughey J T. Formation of silicon local environments upon annealing for silicon anodes:A Si-29 solid state NMR study[J]. Journal of the Electrochemical Society ,2013,160(2):A312-A319. [28] Kang H K,Lee S R,Cho W I, et al . Effect of multilayer structure on cyclic performance of Si/Fe anode electrode in lithium-ion secondary batteries[J]. Physical Chemistry Chemical Physics ,2013,15(5):1569-1577. [29] Park O,Lee J I,Chun M, et al . High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer[J]. Rsc Advances ,2013,3(8):2538-2542. [30] Piper D M,Yersak T A,Lee S H. Effect of compressive stress on electrochemical performance of silicon anodes[J]. Journal of the Electrochemical Society ,2013,160(1):A77-A81. [31] Sethuraman V A,Srinivasan V,Newman J. Analysis of electrochemical lithiation and delithiation kinetics in silicon[J]. Journal of the Electrochemical Society ,2013,160(2):A394-A403. [32] McDowell M T,Lee S W ,Harris J T, et al . In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters ,2013,13(2):758-764. [33] Park Y,Choi N S,Park S, et al . Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries[J]. Advanced Energy Materials ,2013,3(2):206-212. [34] Deng J W,Ji H X,Yan C L, et al . Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance[J]. Angewandte Chemie-International Edition ,2013,52(8):2326-2330. [35] Wang F,Xu S H,Zhu S S, et al . Ni-coated Si microchannel plate electrodes in three-dimensional lithium-ion battery anodes[J]. Electrochimica Acta ,2013,87:250-255. [36] Zhu J,Gladden C,Liu N A, et al . Nanoporous silicon networks as anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(2):440-443. [37] Liu W W,Yan X B,Xue Q J. Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors[J]. Journal of Materials Chemistry C ,2013,1(7):1413-1422. [38] Yang A K,Xue Y,Zhang Y, et al . A simple one-pot synthesis of graphene nanosheet/SnO 2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine[J]. Journal of Materials Chemistry B ,2013,1(13):1804-1811. [39] Xiong H,Yildirim H,Podsiadlo P, et al . Compositional tuning of structural stability of lithiated cubic titania via a vacancy-filling mechanism under high pressure[J]. Physical Review Letters ,2013,110(7). doi:10.1103/PhysRevLett.110.078304. [40] Zhu G N,Chen L,Wang Y G, et al . Binary Li 4 Ti 5 O 12 -Li 2 Ti 3 O 7 nanocomposite as an anode material for Li-ion batteries[J]. Advanced Functional Materials ,2013,23(5):640-647. [41] Suzuki S,Miyayama M. Electrochemical intercalation of lithium into thin film of stacked tetratitanate nanosheets fabricated by electrophoretic deposition[J]. Journal of the Electrochemical Society ,2013,160(2):A293-A296. [42] Yan C L,Xi W,Si W P, et al . Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion- storage capability[J]. Advanced Materials ,2013,25(4):539-544. [43] Darwiche A,Marino C,Sougrati M T, et al . Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems:An unexpected electrochemical mechanism[J]. Journal of the American Chemical Society ,2012,134(51):20805-20811. [44] Feng B,Xie J,Cao G S, et al . Facile synthesis of ultrafine CoSn 2 nanocrystals anchored on graphene by one-pot route and the improved electrochemical Li-storage properties[J]. New Journal of Chemistry ,2013,37(2):474-480. [45] Gu Y,Wu F D,Wang Y. Confined volume change in Sn-Co-C ternary tube-in-tube composites for high-capacity and long-life lithium storage[J]. Advanced Functional Materials ,2013,23(7):893-899. [46] Wang D N,Li X F,Yang J L , et al . Hierarchical nanostructured core-shell Sn@C nanoparticles embedded in graphene nanosheets:Spectroscopic view and their application in lithium ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(10):3535-3542. [47] Zhou X Y,Zou Y L,Yang J, et al . Layer by layer synthesis of Sn-Co-C microcomposites and their application in lithium ion batteries[J]. Journal of Central South University ,2013,20(2):326-331. [48] Liu Z C,Fu W J,Payzant E A, et al . Anomalous high ionic conductivity of nanoporous β -Li 3 PS 4 [J]. Journal of the American Chemical Society ,2013,135(3):975-978. [49] Machida N,Kashiwagi J,Naito M, et al . Electrochemical properties of all-solid-state batteries with ZrO 2 -coated LiNi 1/3 Mn 1/3 Co 1/3 O 2 as cathode materials[J]. Solid State Ionics ,2012,225:354-358. [50] Basrur V R,Guo J C,Wang C S, et al . Synergistic gelation of silica nanoparticles and a sorbitol-based molecular gelator to yield highly-conductive free-standing gel electrolytes[J]. Acs Applied Materials & Interfaces ,2013,5(2):262-267. [51] Chinnam P R,Wunder S L. Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li + ion transference number[J]. Journal of Materials Chemistry A ,2013,1(5):1731-1739. [52] Wilken S,Johansson P,Jacobsson P. Infrared spectroscopy of instantaneous decomposition products of LiPF 6 -based lithium battery electrolytes[J]. Solid State Ionics ,2012,225:608-610. [53] Kramer E,Schedlbauer T,Hoffmann B, et al . Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A356-A360. [54] Abouimrane A,Odom S A,Tavassol H, et al . 3-Hexylthiophene as a stabilizing additive for high voltage cathodes in lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A268-A271. [55] Tan S,Zhang Z R,Li Y X, et al . Tris(hexafluoro- iso-propyl)phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li 0.2 Mn 0.56 Ni 0.16 Co 0.08 ]O 2 cathode material[J]. Journal of the Electrochemical Society ,2013,160(2): A285-A292. [56] Ochida M,Doi T,Domi Y, et al . Effects of electrolyte additives on the suppression of Mn deposition on edge plane graphite for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A410-A413. [57] Petibon R,Aiken C P,Sinha N N, et al . Study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells[J]. Journal of the Electrochemical Society ,2013,160(1):A117-A124. [58] Srour H,Rouault H,Santini C. Imidazolium based ionic liquid electrolytes for Li-ion secondary batteries based on graphite and LiFePO 4 [J]. Journal of the Electrochemical Society ,2013,160(1):A66-A69. [59] Zheng J M,Xiao J,Xu W, et al . Surface and structural stabilities of carbon additives in high voltage lithium ion batteries[J]. Journal of Power Sources ,2013,227:211-217. [60] Ping P,Xia X,Wang Q S, et al . The effect of trimethoxyboroxine on some positive electrodes for Li-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(3):A426-A429. [61] Zuo X X,Fan C J,Liu J S, et al . Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi 0.5 Co 0.2 Mn 0.3 O 2 / graphite cells[J]. Journal of Power Sources ,2013,229:308-312. [62] Black R,Lee J H,Adams B, et al . The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie- International Edition ,2013,52(1):392-396. [63] Bryantsev V S,Uddin J,Giordani V, et al . The identification of stable solvents for nonaqueous rechargeable Li-air batteries[J]. Journal of the Electrochemical Society ,2013,160(1): A160-A171. [64] Ke F S,Solomon B C,Ma SG, et al . Metal-carbon nanocomposites as the oxygen electrode for rechargeable lithium-air batteries[J]. Electrochimica Acta ,2012,85(15):444-449. [65] Park H W,Lee D U,Nazar L F, et al . Oxygen reduction reaction using MnO 2 nanotubes/nitrogen-doped exfoliated graphene hybrid catalyst for Li-O 2 battery applications[J]. Journal of the Electrochemical Society ,2013,160(2):A344-A350. [66] Hummelshoj J S,Luntz A C, Norskov J K. Theoretical evidence for low kinetic overpotentials in Li-O 2 electrochemistry[J]. Journal of Chemical Physics ,2013,138(3):034703. [67] Younesi R,Hahlin M,Bjorefors F, et al . Li-O 2 battery degradation by lithium peroxide (Li 2 O 2 ):A model study[J]. Chemistry of Materials ,2013,25(1):77-84. [68] Trahey L,Karan N K,Chan M K Y, et al . Synthesis,characterization and structural modeling of high-capacity,dual functioning MnO 2 electrode/electrocatalysts for Li-O 2 cells[J]. Advanced Energy Materials ,2013,3(1):75-84. [69] Bryantsev V S. Predicting the stability of aprotic solvents in Li-air batteries: pK a calculations of aliphatic C-H acids in dimethyl sulfoxide[J]. Chemical Physics Letters ,2013,558:42-47. [70] Tsiouvaras N,Meini S,Buchberger I, et al . A novel on-line mass spectrometer design for the study of multiple charging cycles of a Li-O 2 battery[J]. Journal of the Electrochemical Society ,2013,160(3):A471-A477. [71] Guo J C,Yang Z C,Yu Y C, et al . Lithium-sulfur battery cathode enabled by lithium-nitrile interaction[J]. Journal of the American Chemical Society ,2013,135(2):763-767. [72] Yang Z C,Guo J C,Das S K, et al . In situ synthesis of lithium sulfide-carbon composites as cathode materials for rechargeable lithium batteries[J]. Journal of Materials Chemistry A ,2013,1(4):1433-1440. [73] Su Y S,Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications ,2012,3. doi:10.1038/ncomms2163. [74] Kim J,Lee D J,Jung H G, et al . An advanced lithium-sulfur battery[J]. Advanced Functional Materials ,2013,23(8):1076-1080. [75] Zhu X J,Ong C S,Xu X X, et al . Direct observation of lithium-ion transport under an electrical field in Li x CoO 2 nanograins[J]. Scientific Reports ,2013,3. doi:10.1038/srep01084. [76] Andre D,Appel C,Soczka-Guth T, et al . Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources ,2013,224:20-27. [77] Nieto N,Diaz L,Gastelurrutia J, et al . Thermal modeling of large format lithium-ion cells[J]. Journal of the Electrochemical Society ,2013,160(2):A212-A217. [78] Svens P,Kjell M H,Tengstedt C, et al . Li-ion pouch cells for vehicle applications-studies of water transmission and packing materials[J]. Energies ,2013,6(1):400-410. [79] Takahara H,Miyauchi H,Tabuchi M, et al . Elemental distribution analysis of LiFePO 4 /graphite cells studied with glow discharge optical emission spectroscopy (GD-OES)[J]. Journal of the Electrochemical Society ,2013,160(2):A272-A278. [80] Waag W,Kabitz S,Sauer D U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy ,2013,102:885-897. [81] Jin G,Matthews D E,Zhou Z B. A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft[J]. Reliability Engineering & System Safety ,2013,113:7-20. [82] Kircheva N,Genies S,Chabrol C, et al . Evaluation of acoustic emission as a suitable tool for aging characterization of LiAl/LiMnO 2 cell[J]. Electrochimica Acta ,2013,88:488-494. [83] Yi J,Kim U S,Shin C B, et al . Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire[J]. Journal of the Electrochemical Society ,2013,160(3):A437-A443. [84] Xiong R,He H W,Sun F C, et al . Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles[J]. Journal of Power Sources ,2013,229:159-169. [85] Dubarry M,Truchot C,Liaw B Y, et al . Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications III:Effect of thermal excursions without prolonged thermal aging[J]. Journal of the Electrochemical Society ,2013,160(1):A191-A199. [86] Kim J H,Woo S C,Park M S, et al . Capacity fading mechanism of LiFePO 4 -based lithium secondary batteries for stationary energy storage[J]. Journal of Power Sources ,2013,229:190-197. [87] Pinson M B,Bazant M Z. Theory of SEI formation in rechargeable batteries:Capacity fade,accelerated aging and lifetime prediction[J]. Journal of the Electrochemical Society ,2013,160(2):A243-A250. [88] Narayanrao R,Joglekar M M,Inguva S. A phenomenological degradation model for cyclic aging of lithium ion cell materials[J]. Journal of the Electrochemical Society ,2013,160(1):A125-A137. [89] Smith A J,Sinha N N,Dahn J R. Narrow range cycling and storage of commercial Li-ion cells[J]. Journal of the Electrochemical Society ,2013,160(2):A235-A242. [90] Burkhardt S E,Bois J,Tarascon J M, et al . Li-carboxylate anode structure-property relationships from molecular modeling[J]. Chemistry of Materials ,2013, 25(2):132-141. [91] Chen J H,He L M,Wang R L. The stability of redox shuttles for overcharge protection in lithium-ion cells:Studied by a computational model and molecular orbital analysis[J]. Journal of the Electrochemical Society ,2013,160(1):A155-A159. [92] Longo R C,Xiong K,Cho K. Multicomponent silicate cathode materials for rechargeable Li-ion batteries:An Ab initio study[J]. Journal of the Electrochemical Society ,2013,160(1):A60-A65. [93] Moriwake H,Kuwabara A,Fisher C A J, et al . First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material LiCoO 2 [J]. Advanced Materials ,2013,25(4):618-622. [94] Okamoto Y. Ab initio calculations of thermal decomposition mechanism of LiPF 6 -based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A404-A409. [95] Kirklin S,Meredig B,Wolverton C. High-throughput computational screening of new Li-ion battery anode materials[J]. Advanced Energy Materials ,2013,3(2):252-262. [96] Becker D,Cherkashinin G,Hausbrand R, et al . XPS study of diethyl carbonate adsorption on LiCoO 2 thin films[J]. Solid State Ionics ,2013,230:83-85. [97] Deng J,Wagner G J,Muller R P. Phase field modeling of solid electrolyte interface formation in lithium ion batteries[J]. Journal of the Electrochemical Society ,2013,160(3):A487-A496. [98] Song Y C,Shao X J,Guo Z S, et al . Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries[J]. Journal of Physics D:Applied Physics ,2013,46(10):105202. [99] Awarke A,Pischinger S,Ogrzewalla J. Pseudo 3D modeling and analysis of the SEI growth distribution in large format Li-ion polymer pouch cells[J]. Journal of the Electrochemical Society ,2013,160(1):A172-A181. [100] Cannarella J,Arnold C B. Ion transport restriction in mechanically strained separator membranes[J]. Journal of Power Sources ,2013,226:149-155. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||