储能科学与技术 ›› 2014, Vol. 3 ›› Issue (4): 364-375.doi: 10.3969/j.issn.2095-4239.2014.04.011
徐凯琪, 林明翔, 唐代春, 孙洋, 闫勇, 陈彬, 王昊, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2014-06-10
出版日期:
2014-07-01
发布日期:
2014-07-01
通讯作者:
黄学杰,研究员,研究方向为锂电子电池技术,E-mail:xjhuang@jphy.ac.cn.
作者简介:
徐凯琪(1987--),男,博士研究生,研究方向为锂电子电池负极材料,E-mail:xukaiqi@yeah.net;
XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2014-06-10
Online:
2014-07-01
Published:
2014-07-01
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2014年4月1日至2014年5月31日上线的锂电池研究论文,共有1084篇,选择其中100篇加以评论.层状氧化物正极材料的研究工作有材料结构和表面结构分析以及表面包覆对材料充放电循环寿命的影响,高电压的尖晶石结构LiNi0.5M1.5O4材料主要研究了掺杂和表面包覆的作用,磷酸铁锂的研究涉及材料制备方法和热稳定性研究.高容量的硅基负极材料一直是研究的热点,硅负极材料嵌脱锂过程中结构和微结构的变化以及硅或氧化硅与碳或金属复合材料是研究重点,电解液方面的研究论文较多,碳材料与锡/氧化锡复合负极材料,固态电解质,锂空电池,锂硫电池的论文也有多篇.理论模拟工作包括和硅负极材料嵌锂研究以及正极材料的动力学过程研究,除了这些以材料为主的研究之外,针对电池的原位分析,电池模型,电池制造技术的研究论文也有多篇.
中图分类号:
徐凯琪, 林明翔, 唐代春, 孙洋, 闫勇, 陈彬, 王昊, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2014.4.1--2014.5.31)[J]. 储能科学与技术, 2014, 3(4): 364-375.
XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr.1,2014 to May 31,2014)[J]. Energy Storage Science and Technology, 2014, 3(4): 364-375.
[1] Yu X Q,Lyu Y C,Gu L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 cathode materials[J]. Advanced Energy Materials ,2014,doi:10.1002/ aenm.201300950. [2] Yu H J,Qian Y M,Otani M R, et al. Study of the lithium/nickel ions exchange in the layered LiNi 0.42 Mn 0.42 Co 0.16 O 2 cathode material for lithium ion batteries:Experimental and first-principles calculations[J]. Energy & Environmental Science ,2014,7(3):1068-1078. [3] Choi W,Benayard A,Park J H, et al. Versatile coating of lithium conductive Li 2 TiF 6 on over-lithiated layered oxide in lithium-ion batteries[J]. Electrochimica Acta ,2014,117:492-497. [4] Han Z H,Yu J P,Zhan H, et al. Sb 2 O 3 -modified LiNi 1/3 Co 1/3 Mn 1/3 O 2 material with enhanced thermal safety and electrochemical property[J]. Journal of Power Sources ,2014,254:106-111. [5] Koga H,Croguennec L,Menetrier M, et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 in Li ion batteries[J]. Journal of Physical Chemistry C ,2014,118(11):5700-5709. [6] Watanabe S,Kinoshita M,Hosokawa T, et al. Capacity fade of LiAl y Ni 1- x - y Co x O 2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAl y Ni 1- x - y Co x O 2 cathode after cycle tests in restricted depth of discharge ranges)[J]. Journal of Power Sources ,2014,258:210-217. [7] Zhang H Z,Qiao Q Q,Li G R, et al. PO 4 3- polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(20):7454-7460. [8] Xia S B,Zhang Y J,Dong P, et al. CeO 2 surface modification to improve cycle and storage performance on lithium ion battery cathode material LiNi 0.80 Co 0.15 Al 0.05 O 2 [J]. Chinese Journal of Inorganic Chemistry ,2014,30(3):529-535. [9] Idemoto Y,Inoue M,Kitamura N. Composition dependence of average and local structure of x Li(Li 1/3 Mn 2/3 )O 2 -(1- x )Li(Mn 1/3 Ni 1/3 Co 1/3 )O 2 active cathode material for Li-ion batteries[J]. Journal of Power Sources ,2014,259:195-202. [10] Lin F,Markus I M,Nordlund D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature Communications ,2014,doi:10.1038/ncomms4529. [11] Villevieille C,Lanz P,Bunzli C, et al. Bulk and surface analyses of ageing of a 5 V-NCM positive electrode material for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(18):6488-6493. [12] Chen Y P,Zhang Y,Chen B J, et al. An approach to application for LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode material at high cutoff voltage by TiO 2 coating[J]. Journal of Power Sources ,2014,256:20-27. [13] Ghanty C,Basu R N,Majumder S B. Electrochemical performances of 0.9Li 2 MnO 3 -0.1Li(Mn 0.375 Ni 0.375 Co 0.25 )O 2 cathodes:Role of the cycling induced layered to spinel phase transformation[J]. Solid State Ionics ,2014,256:19-28. [14] Guo S H,Yu H J,Liu P, et al. Surface coating of lithium-manganese-rich layered oxides with delaminated MnO 2 nanosheets as cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(12):4422-4428. [15] Ju S H,Kang I S,Lee Y S, et al. Improvement of the cycling performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode active materials by a dual-conductive polymer coating[J]. ACS Applied Materials & Interfaces ,2014,6(4):2545-2551. [16] Liu M H,Huang H T,Lin C M, et al. Mg gradient-doped LiNi 0.5 Mn 1.5 O 4 as the cathode material for Li-ion batteries[J]. Electrochimica Acta ,2014,120:133-139. [17] Yang Z,Jiang Y,Kim J H, et al. The LiZn x Ni 0.5- x Mn 1.5 O 4 spinel with improved high voltage stability for Li-ion batteries[J]. Electrochimica Acta ,2014,117:76-83. [18] Chae J S,Yoon S B,Yoon W S ,et al. Enhanced high-temperature cycling of Li 2 O-2B 2 O 3 -coated spinel-structured LiNi 0.5 Mn 1.5 O 4 cathode material for application to lithium-ion batteries[J]. Journal of Alloys and Compounds ,2014,601:217-222. [19] Yoon T,Kim D,Park K H, et al. Compositional change of surface film deposited on LiNi 0.5 Mn 1.5 O 4 positive electrode[J]. Journal of the Electrochemical Society ,2014,161(4):A519-A523. [20] Park J S,Oh S M,Sun Y K, et al. Thermal properties of fully delithiated olivines[J]. Journal of Power Sources ,2014,256:479-484. [21] Dua J,Kong L B,Liu H, et al. Template-free synthesis of porous-LiFePO 4 /C nanocomposite for high power lithium-ion batteries[J]. Electrochimica Acta ,2014,123:1-6. [22] Fan Q,Lei L X,Xu X Y, et al. Direct growth of FePO 4 /graphene and LiFePO 4 /graphene hybrids for high rate Li-ion batteries[J]. Journal of Power Sources ,2014,257:65-69. [23] Berla L A,Lee S W,Ryu I, et al. Robustness of amorphous silicon during the initial lithiation/delithiation cycle[J]. Journal of Power Sources ,2014,258:253-259. [24] Chevrier V L,Liu L,Le D B, et al. Evaluating Si-based materials for Li-ion batteries in commercially relevant negative electrodes[J]. Journal of the Electrochemical Society ,2014,161(5):A783-A791. [25] Brushett F R,Trahey L,Xiao X H, et al. Full-field synchrotron tomography of nongraphitic foam and laminate anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(6):4524-4534. [26] Fan X,Tang X N,Ma D Q, et al. Novel hollow Sn-Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction[J]. Journal of Solid State Electrochemistry ,2014,18(4):1137-1145. [27] Hang T,Mukoyama D,Nara H, et al. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode[J]. Journal of Power Sources ,2014,256:226-232. [28] Mcallister Q P,Strawhecker K E,Becker C R, et al. In situ atomic force microscopy nanoindentation of lithiated silicon nanopillars for lithium ion batteries[J]. Journal of Power Sources ,2014,257:380-387. [29] Ogata K,Salager E,Kerr C J, et al. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy[J]. Nature Communications ,2014,doi:10.1038/ncomms4217. [30] Su Q M,Xie J,Zhang J, et al. In situ transmission electron microscopy observation of electrochemical behavior of CoS 2 in lithium-ion battery[J]. ACS Applied Materials & Interfaces ,2014,6(4):3023-3029. [31] Yu B C,Hwa Y,Kim J H, et al. A new approach to synthesis of porous SiO x anode for Li-ion batteries via chemical etching of Si crystallites[J]. Electrochimica Acta ,2014,117:426-430. [32] Favors Z,Wang W,Bay H H, et al. Stable cycling of SiO 2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Scientific Reports ,2014,4:4605. [33] Wang D S,Gao M X,Pan H G, et al. High performance amorphous-Si@SiO x /C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization[J]. Journal of Power Sources ,2014,256:190-199. [34] Aravindan V,Sundaramurthy J,Kumar E N, et al. Does carbon coating really improves the electrochemical performance of electrospun SnO 2 anodes?[J]. Electrochimica Acta ,2014,121:109-115. [35] Pang W K,Peterson V K,Sharma N, et al. Lithium migration in Li 4 Ti 5 O 12 studied using in situ neutron powder diffraction[J]. Chemistry of Materials ,2014,26(7):2318-2326. [36] Vargas O,Caballero A,Morales J, et al. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(5):3290-3298. [37] Ding L P,He S L,Miao S D, et al. Ultrasmall SnO 2 Nanocrystals:Hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage[J]. Scientific Reports ,2014,doi:10.1002/adma.201401194 . 2. [38] Fu W,Du F H,Wang K X, et al. In situ growth of ultrafine tin oxide nanocrystals embedded in graphitized carbon nanosheets for use in high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(19):6960-6965. [39] Lian P C,Wang J Y,Cai D D, et al. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds ,2014,604:188-195. [40] Mukherjee R,Thomas A V,Datta D, et al. Defect-induced plating of lithium metal within porous graphene networks[J]. Nature Communications ,2014,doi:10.1038/ncomms4710. [41] Song H W,Li N,Cui H, et al. Enhanced storage capability and kinetic processes by pores-and hetero-atoms-riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes[J]. Nano Energy ,2014,4:81-87. [42] Kajita T,Yuge R,Nakahara K, et al. Deterioration analysis in cycling test at high temperature of 60 ℃for Li-ion cells using sio anode[J]. Journal of the Electrochemical Society ,2014,161(5):A708-A711. [43] Thomas R,Rao G M. Phase and dimensionality of tin oxide at graphene nanosheet array and its electrochemical performance as anode for lithium ion battery[J]. Electrochimica Acta ,2014,125:380-385. [44] Ahn J H,Park S Y,Lee J M, et al. Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li 7 La 3 Zr 2 O 12 [J]. Journal of Power Sources ,2014,254:287-292. [45] Braga M H,Ferreira J A,Stockhausen V, et al. Novel Li 3 ClO based glasses with superionic properties for lithium batteries[J]. Journal of Materials Chemistry A ,2014,2(15):5470-5480. [46] Ma C,Chen K,Liang C D, et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes[J]. Energy & Environmental Science ,2014,7(5):1638-1642. [47] Teragawa S,Aso K,Tadanaga K, et al. Liquid-phase synthesis of a Li 3 PS 4 solid electrolyte using N -methylformamide for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A ,2014,2(14):5095-5099. [48] Yong T Q,Wang J L,Mai Y J, et al. Organosilicon compounds containing nitrile and oligo (ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries[J]. Journal of Power Sources ,2014,254:29-32. [49] Bordes A,Eom K,Fuller T F. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources ,2014,257:163-169. [50] Niedzicki L,Karpierz E,Bitner A, et al. Optimization of the lithium-ion cell electrolyte composition through the use of the LiTDI salt[J]. Electrochimica Acta ,2014,117:224-229. [51] Wang D Y,Sinha N N,Burns J C, et al. A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO 2 /graphite pouch cells[J]. Journal of the Electrochemical Society ,2014,161(4):A467-A472. [52] Benmayza A,Lu W Q,Ramani V, et al. Electrochemical and thermal studies of LiNi 0.8 Co 0.15 Al 0.015 O 2 under fluorinated electrolytes[J]. Electrochimica Acta ,2014,123:7-13. [53] Cho Y G,Kim Y S,Sung D G, et al. Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges[J]. Energy & Environmental Science ,2014,7(5):1737-1743. [54] Matsumoto K,Nakahara K,Inoue K, et al. Performance improvement of Li ion battery with non-flammable TMP mixed electrolyte by optimization of lithium salt concentration and SEI preformation technique on graphite anode[J]. Journal of the Electrochemical Society ,2014,161(5):A831-A834. [55] Kim G Y,Petibon R,Dahn J R. Effects of succinonitrile (SN) as an electrolyte additive on the impedance of LiCoO 2 /graphite pouch cells during cycling[J]. Journal of the Electrochemical Society ,2014,161(4):A506-A512. [56] Zhang J,Wang J L,Yang J, et al. Artificial interface deriving from sacrificial tris (trimethylsilyl) phosphate additive for lithium rich cathode materials[J]. Electrochimica Acta ,2014,117:99-104. [57] Bae S Y,Shin W K,Kim D W. Protective organic additives for high voltage LiNi 0.5 Mn 1.5 O 4 cathode materials[J]. Electrochimica Acta ,2014,125:497-502. [58] Janssen P,Schmitz R,Muller R, et al. 1,3,2-Dioxathiolane-2, 2-dioxide as film-forming agent for propylene carbonate based electrolytes for lithium-ion batteries[J]. Electrochimica Acta ,2014,125:101-106. [59] Li S Y,Zhao W,Zhou Z F, et al. Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(7):4920-4926. [60] Liao C,Han K S,Baggetto L, et al. Synthesis and characterization of lithium bis (fluoromalonato) borate for lithium-ion battery applications[J]. Advanced Energy Materials ,2014,doi:10.1002/aenm.201301368. [61] Xu M Q,Tsiouvaras N,Garsuch A, et al. Generation of cathode passivation films via oxidation of lithium bis (oxalato) borate on high voltage spinel (LiNi 0.5 Mn 1.5 O 4 )[J]. Journal of Physical Chemistry C ,2014,118(14):7363-7368. [62] Yang J P,Zhao P,Shang Y M, et al. Improvement in high-voltage performance of lithium-ion batteries using bismaleimide as an electrolyte additive[J]. Electrochimica Acta ,2014,121:264-269. [63] Chernyshov D V,Krachkovskiy S A,Kapylou A V, et al. Substituted dioxaphosphinane as an electrolyte additive for high voltage lithium-ion cells with overlithiated layered oxide[J]. Journal of the Electrochemical Society ,2014,161(4):A633-A642. [64] Bouayad H,Wang Z,Dupre N, et al. Improvement of electrode/electrolyte interfaces in high-voltage spinel lithium-ion batteries by using glutaric anhydride as electrolyte additive[J]. Journal of Physical Chemistry C ,2014,118(9):4634-4648. [65] Kim J S,Byun D,Lee J K. Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive[J]. Current Applied Physics ,2014,14(4):596-602. [66] Gallagher k G,Goebel S,Greszler T, et al. Quantifying the promise of lithium-air batteries for electric vehicles[J]. Energy & Environmental Science ,2014,7(5):1555-1563. [67] Lu J,Lei Y,Lau K C, et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries[J]. Nature Communications ,2014,doi:10.1038/ncomms3383. [68] Khetan A,Pitsch H,Viswanathan V. Identifying descriptors for solvent stability in nonaqueous Li-O 2 batteries[J]. Journal of Physical Chemistry Letters ,2014,5(8):1318-1323. [69] Huang C,Xiao J,Shao Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nature Communications ,2014,doi:10.1038/ncomms4015. [70] Liu Z,Zhang X H,Lee C S. A stable high performance Li-S battery with a polysulfide ion blocking layer[J]. Journal of Materials Chemistry A ,2014,2(16):5602-5605. [71] Chung S H,Manthiram A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries[J]. Chemical Communications ,2014,50(32):4184-4187. [72] Nan C Y,Lin Z,Liao H G, et al. Durable carbon-coated Li 2 S core-shell spheres for high performance lithium/sulfur cells[J]. Journal of the American Chemical Society ,2014,136(12):4659-4663. [73] Bernhard R,Meini S,Gasteiger H A. On-line electrochemical mass spectrometry investigations on the gassing behavior of Li 4 Ti 5 O 12 electrodes and its origins[J]. Journal of the Electrochemical Society ,2014,161(4):A497-A505. [74] Dubeshter T,Sinha P K,Sakars A, et al. Measurement of tortuosity and porosity of porous battery electrodes[J]. Journal of the Electrochemical Society ,2014,161(4):A599-A605. [75] Ganter M J,Landi B J,Babbitt C W, et al. Cathode refunctionalization as a lithium ion battery recycling alternative[J]. Journal of Power Sources ,2014,256:274-280. [76] Gowda S R,Gallagher K G,Croy J R, et al. Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells[J]. Physical Chemistry Chemical Physics ,2014,16(15):6898-6902. [77] Greco A,Cao D P,Jiang X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources ,2014,257:344-355. [78] Lepage D,Sobha F,Kuss C, et al. Delithiation kinetics study of carbon coated and carbon free LiFePO 4 [J]. Journal of Power Sources ,2014,256:61-65. [79] Petzl M,Danzer M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources ,2014,254:80-87. [80] Samba A,Omar N,Gualous H, et al. Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cells[J]. Electrochimica Acta ,2014,117:246-254. [81] Schmalstieg J,Kabitz S,Ecker M, et al. A holistic aging model for Li(NiMnCo)O 2 based 18650 lithium-ion batteries[J]. Journal of Power Sources ,2014,257:325-334. [82] Bobrikov I A,Balagurov A M,Hu C W, et al. Structural evolution in LiFePO 4 -based battery materials:In-situ and ex-situ time-of-flight neutron diffraction study[J]. Journal of Power Sources ,2014,258:356-364. [83] Eastwood D S,Bradley R S,Tariq F, et al. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes[J]. Nuclear Instruments & Methods in Physics Research Section B : Beam Interactions with Materials and Atoms ,2014,324:118-123. [84] Ebner M,Chung D W,Garcia R E, et al. Tortuosity anisotropy in lithium-ion battery electrodes[J]. Advanced Energy Materials ,2014,doi:10.1002/aenm.201301278. [85] Hayamizu K,Aihara Y,Machida N. Anomalous lithium ion migration in the solid electrolyte (Li 2 S) 7 (P 2 S 5 ) 3 ; fast ion transfer at short time intervals studied by PGSE NMR spectroscopy[J]. Solid State Ionics ,2014,259:59-64. [86] Takai S,Yoshioka K,Iikura H, et al. Tracer diffusion coefficients of lithium ion in LiMn 2 O 4 measured by neutron radiography[J]. Solid State Ionics ,2014,256:93-96. [87] Gross T,Hess C. Raman diagnostics of LiCoO 2 electrodes for lithium-ion batteries[J]. Journal of Power Sources ,2014,256:220-225. [88] Dubarry M,Truchot C,Liaw B Y. Cell degradation in commercial LiFePO 4 cells with high-power and high-energy designs[J]. Journal of Power Sources ,2014,258:408-419. [89] Roberts M R,Madsen A,Nicklin C, et al. Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO 4 electrodes during charge/discharge cycling of lithium batteries[J]. Journal of Physical Chemistry C ,2014,118(13):6548-6557. [90] Cai W W,Zhang Y F,Li J, et al. Single-ion polymer electrolyte membranes enable lithiumion batteries with a broad operating temperature range[J]. ChemSusChem ,2014,7(4):1063-1067. [91] Orvananos B,Ferguson T R,Yu H C, et al. Particle-level modeling of the charge-discharge behavior of nanoparticulate phase-separating li-ion battery electrodes[J]. Journal of the Electrochemical Society ,2014,161(4):A535-A546. [92] Bai P,Bazant M Z. Charge transfer kinetics at the solid-solid interface in porous electrodes[J]. Nature Communications ,2014,doi:10.1038/ncomms4585. [93] Iddir H,Benedek R. First-principles analysis of phase stability in layered-layered composite cathodes for lithium-ion batteries[J]. Chemistry of Materials ,2014,26(7):2407-2413. [94] Meier K,Laino T,Curioni A. Solid-state electrolytes:Revealing the mechanisms of li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J]. Journal of Physical Chemistry C ,2014,118(13):6668-6679. [95] Li X B,Chen Y J,Nguyen C C, et al. Stability of inactive components of cathode laminates for lithium ion batteries at high potential[J]. Journal of the Electrochemical Society ,2014,161(4):A576-A582. [96] Qu W G,Dorjpalam E,Rajagopalan R, et al. Role of additives in formation of solid-electrolyte interfaces on carbon electrodes and their effect on highvoltage stability[J]. ChemSusChem ,2014,7(4):1162-1169. [97] Stournara M E,Qi Y,Shenoy V B. From ab initio calculations to multiscale design of Si/C core-shell particles for Li-ion anodes[J]. Nano Letters ,2014,14(4):2140-2149. [98] Vitucci F M,Palumbo O,Paolone A, et al. Dynamics of Mn 3+ in off-stoichiometric LiMn 1.5 Ni 0.5 O 4 [J]. Journal of Alloys and Compounds ,2014,604:83-86. [99] Yu H C,Ling C,Bhattacharya J, et al. Designing the next generation high capacity battery electrodes[J]. Energy & Environmental Science ,2014,7(5):1760-1768. [100] Chiu K F,Su S H,Leu H J, et al. Application of lithiated perfluorosulfonate ionomer binders to enhance high rate capability in LiMn 2 O 4 cathodes for lithium ion batteries[J]. Electrochimica Acta ,2014,117:134-138. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||