储能科学与技术 ›› 2014, Vol. 3 ›› Issue (5): 445-456.doi: 10.3969/j.issn.2095-4239.2014.05.002
闫勇, 徐凯琪, 林明翔, 唐代春, 孙洋, 陈彬, 王昊, 胡飞, 詹元杰, 陈宇阳, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2014-08-15
出版日期:
2014-09-01
发布日期:
2014-09-01
通讯作者:
黄学杰,研究员,E-mail:xjhuang@iphy.ac.cn.
作者简介:
闫勇(1988--),男,博士研究生,研究方向为锂离子电池电极材料,E-mail:yanyong19881202@126.com;
YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, CHEN Bin, WANG Hao, HU Fei, ZHAN Yuanjie, CHEN Yuyang, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2014-08-15
Online:
2014-09-01
Published:
2014-09-01
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2014年6月1日至2014年7月31日上线的锂电池研究论文,共有1302篇,选择其中100篇加以评论.层状氧化物正极材料的研究工作有材料结构分析以及掺杂和表面包覆对材料充放电循环寿命的影响,高电压的尖晶石结构LiNi0.5M1.5O4材料主要研究了掺杂和表面包覆以及电解液的作用,磷酸盐正极材料的研究涉及材料制备方法和充放电过程结构变化研究.高容量的硅基负极材料一直是研究的热点,硅碳复合负极材料,硅材料表面包覆以及SEI是研究重点,碳材料与锡/氧化锡复合负极材料,固态电解质,锂空电池,锂硫电池的论文也有多篇.理论模拟工作包括SEI研究以及正极材料表面电子结构研究,除了这些以材料为主的研究之外,针对电池的原位分析,电池模型,电极制造技术的研究论文也有多篇.
中图分类号:
闫勇, 徐凯琪, 林明翔, 唐代春, 孙洋, 陈彬, 王昊, 胡飞, 詹元杰, 陈宇阳, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2014.6.1--2014.7.31)[J]. 储能科学与技术, 2014, 3(5): 445-456.
YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, CHEN Bin, WANG Hao, HU Fei, ZHAN Yuanjie, CHEN Yuyang, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(June 1,2014 to July 31,2014)[J]. Energy Storage Science and Technology, 2014, 3(5): 445-456.
[1] Ma J,Zhou Y N,Gao Y R, et al . Feasibility of using Li 2 MoO 3 in constructing Li-rich high energy density cathode materials[J]. Chemistry of Materials ,2014,26(10):3256-3262. [2] Makimura Y,Okuda C,Nonaka T, et al . X-Ray absorption and diffraction studies of LiNiO 2 -derivatives with or without electrolyte at elevated temperature[J]. Ecs Electrochemistry Letters ,2014,3(6):A66-A68. [3] Long B R,Croy J R,Dogan F, et al . Effect of cooling rates on phase separation in 0.5Li 2 MnO 3 ·0.5LiCoO 2 electrode materials for Li-ion batteries[J]. Chemistry of Materials ,2014,26(11):3565-3572. [4] Yu F D,Wang Z B,Chen F, et al . Crystal structure and multicomponent effects in Li 1+ x Mn 2- x - y AlyO 4 cathode materials for Li-ion batteries[J]. Journal of Power Sources ,2014,262:104-111. [5] Huang X,Wang M,Che R. Modulating the Li + /Ni 2+ replacement and electrochemical performance optimizing of layered lithium-rich Li 1.2 Ni 0.2 Mn 0.6 O 2 by minor Co dopant[J]. Journal of Materials Chemistry A ,2014,2(25):9656. [6] Park J H,Kim J M,Lee C K, et al . Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials[J]. Journal of Power Sources ,2014,263:209-216. [7] Chen W H,Zhao J J,Li Y Y, et al . Aluminum insertion-induced enhanced performance of Li(Ni 0.83- x Co 0.10 Mn 0.07 Al y )O 2 microspheres for lithium-ion batteries design[J]. Chemelectrochem ,2014,1(3):601-610. [8] Wu W W,Xiang H F,Zhong G B, et al . Ordered LiNi 0.5 Mn 1.5 O 4 hollow microspheres as high-rate 5 V cathode materials for lithium ion batteries[J]. Electrochimica Acta ,2014,119:206-213. [9] Zhou J G,Hong D,Wang J, et al . Electronic structure variation of the surface and bulk of a LiNi 0.5 Mn 1.5 O 4 cathode as a function of state of charge:X-ray absorption spectroscopic study[J]. Physical Chemistry Chemical Physics ,2014,16(27):13838-13842. [10] Jin Y C,Lu M I,Wang T H, et al . Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery[J]. Journal of Power Sources ,2014,262:483-487. [11] Chong J,Xun S,Zhang J, et al . Li 3 PO 4 -coated LiNi 0.5 Mn 1.5 O 4 :A stable high-voltage cathode material for lithium-ion batteries[J]. Chemistry ,2014,20(24):7479-7485. [12] Chen D R,Li B Z,Liao Y H, et al . Improved electrochemical performance of LiNi 0.5 Mn 1.5 O 4 as cathode of lithium ion battery by Co and Cr co-doping[J]. Journal of Solid State Electrochemistry ,2014,18(7):2027-2033. [13] Zhu W,Liu D,Trottier J, et al . Comparative studies of the phase evolution in M-doped Li x Mn 1.5 Ni 0.5 O 4 (M = Co,Al,Cu and Mg) by in-situ X-ray diffraction[J]. Journal of Power Sources ,2014,264:290-298. [14] Kebede M A,Kunjuzwa N,Jafta C J, et al . Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNi x Mn 2- x O 4 ,0≤ x ≤0.2) for lithium ion battery:Enhancing energy storage,capacity retention,and lithium ion transport[J]. Electrochimica Acta ,2014,128:172-177. [15] Lin H B,Hu J N,Rong H B, et al . Porous LiMn 2 O 4 cubes architectured with single-crystalline nanoparticles and exhibiting excellent cyclic stability and rate capability as the cathode of a lithium ion battery[J]. Journal of Materials Chemistry A ,2014,2(24):9272. [16] Zhang X Y,Van Hulzen M,Singh D P, et al . Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO 4 [J]. Nano Letters ,2014,14(5):2279-2285. [17] Zhang Y P,Wu L L,Zhao J B, et al . A facile precursor-separated method to synthesize nano-crystalline LiFePO 4 /C cathode materials[J]. Journal of Electroanalytical Chemistry ,2014,719:1-6. [18] Ravnsbaek D B,Xiang K,Xing W, et al . Extended solid solutions and coherent transformations in nanoscale olivine cathodes[J]. Nano Letters ,2014,14(3):1484-1491. [19] Paolella A,Bertoni G,Dilena E, et al . Redox centers evolution in phospho-olivine type (LiFe 0.5 Mn 0.5 PO 4 ) nanoplatelets with uniform cation distribution[J]. Nano Letters ,2014,14(3):1477-1483. [20] Gutierrez A,Qiao R M,Wang L P, et al . High-capacity,aliovalently doped olivine LiMn (1-3 x /2) V x square x /2PO 4 cathodes without carbon coating[J]. Chemistry of Materials ,2014,26(9):3018-3026. [21] Truong Q D,Deyaraju M K,Sasaki Y, et al . Relocation of cobalt ions in electrochemically delithiated LiCoPO 4 cathode materials[J]. Chemistry of Materials ,2014,26(9):2770-2773. [22] Han D W,Lim S J,Kim Y I, et al . Facile lithium ion transport through superionic pathways formed on the surface of Li 3 V 2 (PO 4 ) 3 /C for high power Li ion battery[J]. Chemistry of Materials ,2014,26(12):3644-3650. [23] Jerliu B,Huger E,Dorrer L, et al . Volume expansion during lithiation of amorphous silicon thin film electrodes studied by in-operando neutron reflectometry[J]. Journal of Physical Chemistry C ,2014,118(18):9395-9399. [24] Choi Y S,Pharr M,Kang C S, et al . Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon[J]. Journal of Power Sources ,2014,265:160-165. [25] Lee B S,Yang H S,Jung H, et al . Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery[J]. Nanoscale ,2014,6(11):5989-5998. [26] Liu H,Cho H M,Meng Y S, et al . Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode[J]. Acs Applied Materials & Interfaces ,2014,6(12):9842-9849. [27] Park M S,Park E,Lee J, et al . Hydrogen silsequioxane-derived Si/SiO x nanospheres for high-capacity lithium storage materials[J]. Acs Applied Materials & Interfaces ,2014,6(12):9608-9613. [28] Fang S,Shen L F,Xu G Y, et al . Rational design of void-involved Si@TiO 2 nanospheres as high-performance anode material for lithium-ion batteries[J]. Acs Applied Materials & Interfaces ,2014,6(9):6497-6503. [29] Lim K W,Lee J I,Yang J, et al . Catalyst-free synthesis of Si-SiO x core-shell nanowire anodes for high-rate and high-capacity lithium-ion batteries[J]. Acs Applied Materials & Interfaces ,2014,6(9):6340-6345. [30] Tokranov A,Sheldon B W,Li C Z, et al . In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries[J]. Acs Applied Materials & Interfaces ,2014,6(9):6672-6686. [31] Fister T T,Esbenshade J,Chen X, et al . Lithium intercalation behavior in multilayer silicon electrodes[J]. Advanced Energy Materials ,2014,4(7). [32] Chang J B,Huang X K,Zhou G H, et al . Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode[J]. Advanced Materials ,2014,26(5):758-764. [33] Piper D M,Travis J J,Young M, et al . Reversible high-capacity Si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition[J]. Advanced Materials ,2014,26(10):1596-1601. [34] Cho J H,Picraux S T. Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation[J]. Nano Letters ,2014,14(6):3088-3095. [35] Piper D M,Woo J H,Son S B, et al . Hierarchical porous framework of Si-based electrodes for minimal volumetric expansion[J]. Adv. Mater. ,2014,26(21):3520-3525. [36] Tariq F,Yufit V,Eastwood D S, et al . In-operando x-ray tomography study of lithiation induced delamination of Si based anodes for lithium-ion batteries[J]. ECS Electrochemistry Letters ,2014,3(7):A76-A78. [37] Zhou H,Nanda J,Martha S K, et al . Role of surface functionality in the electrochemical performance of silicon nanowire anodes for rechargeable lithium batteries[J]. Acs Applied Materials & Interfaces ,2014,6(10):7607-7614. [38] Radvanyi E,De Vito E,Porcher W, et al . An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries[J]. Journal of Analytical Atomic Spectrometry ,2014,29(6):1120. [39] Song T,Cheng H Y,Town K, et al . Electrochemical properties of Si-Ge heterostructures as an anode material for lithium ion batteries[J]. Advanced Functional Materials ,2014,24(10):1458-1464. [40] Pan L,Wang H B,Gao D C, et al . Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries[J]. Chemical Communications ,2014,50(44):5878-5880. [41] Zhou J G,Hu Y F,Li X L, et al . Chemical bonding in amorphous Si-coated carbon nanotubes as anodes for Li ion batteries:A XANES study[J]. Rsc Advances ,2014,4(39):20226-20229. [42] Nguyen B P N,Chazelle S,Cerbelaud M, et al . Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells[J]. Journal of Power Sources ,2014,262:112-122. [43] Chen P,Wu F D,Wang Y. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries[J]. Chemsuschem ,2014,7(5):1407-1414. [44] Bresser D,Mueller F,Buchholz D, et al . Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes[J]. Electrochimica Acta ,2014,128:163-171. [45] Dao T D,Hong J E,Ryu K S, et al . Super-tough functionalized graphene paper as a high-capacity anode for lithium ion batteries[J]. Chemical Engineering Journal ,2014,250:257-266. [46] Liu Y,Ma R,He Y, et al . Synthesis,structure transformation,and electrochemical properties of Li 2 MgSi as a novel anode for Li-ion batteries[J]. Advanced Functional Materials ,2014,24(25):3944-3952. [47] Chae J E,Annaka K,Hong K, et al . Electrochemical characterization of phosphorous-doped soft carbon using single particle for lithium battery anode[J]. Electrochimica Acta ,2014,130:60-65. [48] Steiger J,Kramer D,Mnig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources ,2014,261:112-119. [49] Shen Y B,Sondergaard M,Christensen M, et al . Solid state formation mechanism of Li 4 Ti 5 O 12 from an anatase TiO 2 source[J]. Chemistry of Materials ,2014,26(12):3679-3686. [50] Rangasamy E,Li J C,Sahu G, et al . Pushing the theoretical limit of Li-CF x batteries:A tale of bifunctional electrolyte[J]. Journal of the American Chemical Society ,2014,136(19):6874-6877. [51] Khurana R,Schaefer J L,Archer L A, et al . Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes:A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society ,2014,136(20):7395-7402. [52] Zhang H,Liu C Y,Zheng L P, et al . Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte[J]. Electrochimica Acta ,2014,133:529-538. [53] Zhang Y F,Sun Y B,Xu G D, et al . Lithium-ion batteries with a wide temperature range operability enabled by highly conductive sp(3) boron-based single ion polymer electrolytes[J]. Energy Technology ,2014,2(7):643-650. [54] Li S Y,Zhao W,Cui X L, et al . Lithium difluoro(sulfato)borate as a novel electrolyte salt for high-temperature lithium-ion batteries[J]. Electrochimica Acta ,2014,129:327-333. [55] Yim T,Kim S H,Woo S G, et al . 1,3-Propanesultone as an effective functional additive to enhance the electrochemical performance of over-lithiated layered oxides[J]. Rsc Advances ,2014,4(37):19172-19176. [56] Ciosek H Gstr M K,Hahlin M,Malmgren S, et al . Aging of electrode/electrolyte interfaces in LiFePO 4 /graphite cells cycled with and without PMS additive[J]. The Journal of Physical Chemistry C ,2014,118(24):12649-12660. [57] Park Y,Shin S H,Hwang H, et al . Investigation of solid electrolyte interface (SEI) film on LiCoO 2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS)[J]. Journal of Molecular Structure ,2014,1069:157-163. [58] Park Y,Shin S H,Lee S M, et al . 2D Raman correlation analysis of formation mechanism of passivating film on overcharged LiCoO 2 electrode with additive system[J]. Journal of Molecular Structure ,2014,1069:183-187. [59] Rollins H W,Harrup M K,Dufek E J, et al . Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes[J]. Journal of Power Sources ,2014,263:66-74. [60] Song Y M,Han J G,Park S, et al . A multifunctional phosphite-containing electrolyte for 5 V-class LiNi 0.5 Mn 1.5 O 4 cathodes with superior electrochemical performance[J]. Journal of Materials Chemistry A ,2014,2(25):9506. [61] Rong H,Xu M,Xing L, et al . Enhanced cyclability of LiNi 0.5 Mn 1.5 O 4 cathode in carbonate based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP)[J]. Journal of Power Sources ,2014,261:148-155. [62] Yan G,Li X,Wang Z, et al . Beneficial effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the electrochemical properties of LiNi 0.5 Mn 1.5 O 4 cathode material[J]. Journal of Power Sources ,2014,263:231-238. [63] Croy J R,Abouimrane A,Zhang Z C. Next-generation lithium-ion batteries:The promise of near-term advancements[J]. Mrs Bulletin ,2014,39(5):407-415. [64] Hu L,Amine K,Zhang Z. Fluorinated electrolytes for 5 V Li-ion chemistry:Dramatic enhancement of LiNi 0.5 Mn 1.5 O 4 /graphite cell performance by a lithium reservoir[J]. Electrochemistry Communications ,2014,44:34-37. [65] Xue L,Ueno K,Lee S Y, et al . Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes,including the LiNi 0.5 Mn 1.5 O 4 high voltage cathode[J]. Journal of Power Sources ,2014,262:123-128. [66] Lee Y M,Nam K M,Hwang E H, et al . Interfacial origin of performance improvement and fade for 4.6 V LiNi 0.5 Co 0.2 Mn 0.3 O 2 battery cathodes[J]. Journal of Physical Chemistry C ,2014,118(20):10631-10639. [67] Wang H S,Rus E,Sakuraba T, et al . CO 2 and O 2 evolution at high voltage cathode materials of Li-ion batteries:A differential electrochemical mass spectrometry study[J]. Analytical Chemistry ,2014,86(13):6197-6201. [68] Markevich E,Salitra G,Fridman K, et al . Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode[J]. Langmuir ,2014,30(25):7414-7424. [69] Zuo X,Wu J,Fan C, et al . Improvement of the thermal stability of LiMn 2 O 4 /graphite cells with methylene methanedisulfonate as electrolyte additive[J]. Electrochimica Acta ,2014,130:778-784. [70] Kim D S,Park Y J. A simple method for surface modification of carbon by polydopamine coating for enhanced Li-air batteries[J]. Electrochimica Acta ,2014,132:297-306. [71] Sun B,Huang X,Chen S, et al . Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential,long life,and high capacity lithium-oxygen batteries[J]. Nano Letters ,2014,14(6):3145-3152. [72] Lin C N,Chen W C,Song Y F, et al . Understanding dynamics of polysulfide dissolution and re-deposition in working lithium-sulfur battery by in-operando transmission X-ray microscopy[J]. Journal of Power Sources ,2014,263:98-103. [73] Vizintin A,Patel M U M,Genorio B, et al . Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries[J]. Chemelectrochem ,2014,1(6):1040-1045. [74] Canas N A,Fronczek D N,Wagner N, et al . Experimental and theoretical analysis of products and reaction intermediates of lithium-sulfur batteries[J]. The Journal of Physical Chemistry C ,2014,118(23):12106-12114. [75] Assary R S,Curtiss L A,Moore J S. Toward a molecular understanding of energetics in Li-S batteries using nonaqueous electrolytes:A high-level quantum chemical study[J]. The Journal of Physical Chemistry C ,2014,118(22):11545-11558. [76] Nagata H,Chikusa Y. Activation of sulfur active material in an all-solid-state lithium-sulfur battery[J]. Journal of Power Sources ,2014,263:141-144. [77] Liu J,Nara H,Yokoshima T, et al . Carbon-coated Li 2 S synthesized by poly(vinylpyrrolidone) and acetylene black for lithium ion battery cathodes[J]. Chemistry Letters ,2014,43(6):901-903. [78] Shalouf S M,Zhang J,Wang C H. Effects of mechanical deformation on electric performance of rechargeable batteries embedded in load carrying composite structures[J]. Plastics,Rubber and Composites ,2014,43(3):98-104. [79] Kim H,Park K Y,Hong J, et al . All-graphene-battery:Bridging the gap between supercapacitors and lithium ion batteries[J]. Sci Rep .,2014,4:5278. [80] Abellan P,Mehdi B L,Parent L R, et al . Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy[J]. Nano Letters ,2014,14(3):1293-1299. [81] Xie Y Y,Li J Y,Yuan C. Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling[J]. Electrochimica Acta ,2014,127:266-275. [82] Lim C,Yan B,Yin L L, et al . Geometric characteristics of three dimensional reconstructed anode electrodes of lithium ion batteries[J]. Energies ,2014,7(4):2558-2572. [83] Malav V,Berger J R,Zhu H, et al . A computational model of the mechanical behavior within reconstructed Li x CoO 2 Li-ion battery cathode particles[J]. Electrochimica Acta ,2014,130:707-717. [84] Yamamoto K,Minato T,Mori S, et al . Improved cyclic performance of lithium-ion batteries:An investigation of cathode/electrolyte interface via in situ total-reflection fluorescence x-ray absorption spectroscopy[J]. Journal of Physical Chemistry C ,2014,118(18):9538-9543. [85] Maher K,Yazami R. A thermodynamic and crystal structure study of thermally aged lithium ion cells[J]. Journal of Power Sources ,2014,261:389-400. [86] Fleischer C,Waag W,Heyn H M, et al . On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models[J]. Journal of Power Sources ,2014,260:276-291. [87] Bitsch B,Dittmann J,Schmitt M, et al . A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties[J]. Journal of Power Sources ,2014,265:81-90. [88] Bitzer B,Gruhle A. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources ,2014,262:297-302. [89] Jones E M C,Silberstein M N,White S R, et al . In situ measurements of strains in composite battery electrodes during electrochemical cycling[J]. Experimental Mechanics ,2014,54(6):971-985. [90] Maleki H,Wang H,Porter W, et al . Li-ion polymer cells thermal property changes as a function of cycle-life[J]. Journal of Power Sources ,2014,263:223-230. [91] Richardson R R,Ireland P T,Howey D A. Battery internal temperature estimation by combined impedance and surface temperature measurement[J]. Journal of Power Sources ,2014,265:254-261. [92] Zhang Yunyun,Zhang Guoqing,Wu Weixiong, et al . Heat dissipation structure research for rectangle LiFePO 4 power battery[J]. Heat and Mass Transfer ,2014,50(7):887-893. [93] Fu R,Choe S Y,Agubra V, et al . Modeling of degradation effects considering side reactions for a pouch type Li-ion polymer battery with carbon anode[J]. Journal of Power Sources ,2014,261:120-135. [94] Honkura K,Horiba T. Study of the deterioration mechanism of LiCoO 2 /graphite cells in charge/discharge cycles using the discharge curve analysis[J]. Journal of Power Sources ,2014,264:140-146. [95] Gratz E,Sa Q,Apelian D, et al . A closed loop process for recycling spent lithium ion batteries[J]. Journal of Power Sources ,2014,262:255-262. [96] Kutteh R,Avdeev M. Initial assessment of an empirical potential as a portable tool for rapid investigation of Li + diffusion in Li + -battery cathode materials[J]. Journal of Physical Chemistry C ,2014,118(21):11203-11214. [97] Takenaka N,Suzuki Y,Sakai H, et al . On electrolyte-dependent formation of solid electrolyte interphase film in lithium-ion batteries:Strong sensitivity to small structural difference of electrolyte molecules[J]. Journal of Physical Chemistry C ,2014,118(20):10874-10882. [98] Ziebarth B,Klinsmann M,Eckl T, et al . Lithium diffusion in the spinel phase Li 4 Ti 5 O 12 and in the rocksalt phase Li 7 Ti 5 O 12 of lithium titanate from first principles[J]. Physical Review B ,2014,89(17). [99] Wang L,Deng D,Lev L C, et al . In-situ investigation of solid-electrolyte interphase formation on the anode of Li-ion batteries with atomic force microscopy[J]. Journal of Power Sources ,2014,265:140-148. [100] De S,Gordon J,Sikha G. Mathematical model for silicon electrode Part II:Simulations on different electrode nanostructures[J]. Journal of Power Sources ,2014,262:524-533. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||