[1] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [2] Kim T H,Park J S,Chang S K, et al . The current move of lithium ion batteries towards the next phase[J]. Advanced Energy Materials ,2012,2(7):860-872. [3] Goodenough J B,Park K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society ,2013,135(4):1167-1176. [4] Kim S W,Seo D H,Ma X, et al . Electrode materials for rechargeable sodium-ion batteries:Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials ,2012,2(7):710-721. [5] Palomares V,Serras P,Villaluenga I, et al . Na-ion batteries,recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science ,2012,5(3):5884-5901. [6] Yan J,Wang Q,Wei T, et al . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials ,2014,doi:10.1002/ aenm.201300816. [7] Gao H,Lian K. Proton-conducting polymer electrolytes and their applications in solid supercapacitors:A review[J]. RSC Advances ,2014,4(62):33091-33113. [8] Pavlov D,Nikolov P. Lead-carbon electrode with inhibitor of sulfation for lead-acid batteries operating in the HRPSoC duty[J]. Journal of the Electrochemical Society ,2012,159(8):A1215-A1225. [9] Pavlov D,Nikolov P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling[J]. Journal of Power Sources ,2013,242:380-399. [10] Handbook of Industrial Diamonds and Diamond Films[M]. CRC Press,1997. [11] Kelly B T. The physics of graphite (London:Applied science); 1981b [J]. High Temp . Hige Pressures ,1981,13:245. [12] Smalley R E,Kroto H W,Heath J R. C60:Buckminsterfullerene[J]. Nature ,1985,318(6042):162-163. [13] Iijima S. Helical microtubules of graphitic carbon[J]. Nature ,1991,354(6348):56-58. [14] Novoselov K S,Geim A K,Morozov S V, et al . Electric field effect in atomically thin carbon films[J]. Science ,2004,306(5696):666-669. [15] Henning T,Salama F. Carbon in the universe[J]. Science ,1998,282(5397):2204-2210. [16] Geim A K,Novoselov K S. The rise of graphene[J]. Nature Materials ,2007,6(3):183-191. [17] Largeot C,Portet C,Chmiola J, Taberna P,Gogotsi y,Simon P. Relation between the ion size and pore size for an electric double-layer capacitor[J]. J. Am. Chem. Soc .,2008,130(9):2730-2731. [18] Kandalkar S G,Dhawale D S,Kim C K, et al . Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application[J]. Synthetic Metals ,2010,160(11):1299-1302. [19] Wang G,Zhang L,Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews ,2012,41(2):797-828. [20] Eberle U,Von Helmolt R. Sustainable transportation based on electric vehicle concepts:A brief overview[J]. Energy & Environmental Science ,2010,3(6):689-699. [21] Zhang J,Zhao X S. On the configuration of supercapacitors for maximizing electrochemical performance[J]. Chem . Sus . Chem. ,2012,5(5):818-841. [22] Simon P,Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials ,2008,7(11):845-854. [23] Winter M,Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews ,2004,104(10):4245-4270. [24] Zhi M,Xiang C,Li J, et al . Nanostructured carbon-metal oxide composite electrodes for supercapacitors:A review[J]. Nanoscale ,2013,5(1):72-88. [25] Zhang L L,Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews ,2009,38(9):2520-2531. [26] Conway B E. Electrochemical Supercapacitors[M]. New York:Kluwer Academic/Plenum Press,1999. [27] Babakhani B,Ivey D G. Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors[J]. Electrochimica Acta ,2010,55(12):4014-4024. [28] Sarangapani S,Tilak B V,Chen C P. Materials for electrochemical capacitors theoretical and experimental constraints[J]. Journal of the Electrochemical Society ,1996,143(11):3791-3799. [29] Chmiola J,Largeot C,Taberna P L, et al . Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science ,2010,328(5977):480-483. [30] Yu G,Hu L,Vosgueritchian M, et al . Solution-processed graphene/MnO 2 nanostructured textiles for high-performance electrochemical capacitors[J]. Nano Letters ,2011,11(7):2905-2911. [31] Zhu Y,Murali S,Stoller M D, et al . Carbon-based supercapacitors produced by activation of graphene[J]. Science ,2011,332(6037):1537-1541. [32] Lu Q,Chen J G,Xiao J Q. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edition ,2013,52(7):1882-1889. [33] Liu S,Sun S,You X Z. Inorganic nanostructured materials for high performance electrochemical supercapacitors[J]. Nanoscale ,2014,6(4):2037-2045. [34] Béguin F,Presser V,Balducci A, et al . Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials ,2014,26(14):2219-2251. [35] Rufford T E,Hulicova-Jurcakova D,Zhu Z, et al . Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors[J]. Electrochemistry Communications ,2008,10(10):1594-1597. [36] Liu L,Ma W,Zhang Z. Macroscopic carbon nanotube assemblies:Preparation,properties,and potential applications[J]. Small ,2011,7(11):1504-1520. [37] Yao Z,Kane C L,Dekker C. High-field electrical transport in single-wall carbon nanotubes[J]. Physical Review Letters ,2000,84(13):2941. [38] Radosavljević M,Lefebvre J,Johnson A T. High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes[J]. Physical Review B ,2001,64(24):41307. [39] Pop E,Mann D,Wang Q, et al . Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters ,2006,6(1):96-100. [40] Huang H,Liu C H,Wu Y, et al . Aligned carbon nanotube composite films for thermal management[J]. Advanced Materials ,2005,17(13):1652-1656. [41] Kordas K,Tóth G,Moilanen P, et al . Chip cooling with integrated carbon nanotube microfin architectures[J]. Applied Physics Letters ,2007,90(12):123105. [42] Niu C,Sichel E K,Hoch R, et al . High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters ,1997,70(11):1480-1482. [43] Zhang H,Cao G,Yang Y, et al . Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes[J]. Journal of the Electrochemical Society ,2008,155(2):K19-K22. [44] Futaba D N,Hata K,Yamada T, et al . Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials ,2006,5(12):987-994. [45] Kang D Y,Moon J H. Carbon nanotube balls and their application in supercapacitors[J]. ACS Applied Materials & Interfaces ,2013,6(1):706-711. [46] Novoselov K S. Graphene:Materials in the flatland (Nobel lecture)[J]. Angewandte Chemie International Edition ,2011,50(31):6986-7002. [47] Brodie B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London ,1859:249-259. [48] Novoselov K S,Jiang D,Schedin F, et al . Two- dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America ,2005,102(30):10451-10453. [49] Dreyer D R,Ruoff R S,Bielawski C W. From conception to realization:An historial account of graphene and some perspectives for its future[J]. Angewandte Chemie International Edition ,2010,49(49):9336-9344. [50] Calizo I,Balandin A A,Bao W, et al . Temperature dependence of the Raman spectra of graphene and graphene multilayers[J]. Nano Letters ,2007,7(9):2645-2649. [51] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials ,2011,10(8):569-581. [52] Nika D L,Balandin A A. Two-dimensional phonon transport in graphene[J]. Journal of Physics : Condensed Matter .,2012,24(23):233203. [53] Meyer J C,Geim A K,Katsnelson M I, et al . The structure of suspended graphene sheets[J]. Nature ,2007,446(7131):60-63. [54] Guo S,Dong S. Graphene nanosheet:Synthesis,molecular engineering,thin film,hybrids,and energy and analytical applications[J]. Chemical Society Reviews ,2011,40(5):2644-2672. [55] Zhou Y,Bao Q,Tang L A L, et al . Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chemistry of Materials ,2009,21(13):2950-2956. [56] Xu C,Xu B,Gu Y, et al . Graphene-based electrodes for electrochemical energy storage[J]. Energy & Environmental Science ,2013,6(5):1388-1414. [57] Li X,Cai W,An J, et al . Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science ,2009,324(5932):1312-1314. [58] Subrahmanyam K S,Panchakarla L S,Govindaraj A, et al . Simple method of preparing graphene flakes by an arc-discharge method[J]. The Journal of Physical Chemistry C ,2009,113(11):4257-4259. [59] Kim K H,Yang M H,Cho K M, et al . High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures[J]. Scientific Reports ,2013,33:3251. [60] Jiang L,Fan Z. Design of advanced porous graphene materials:From graphene nanomesh to 3D architectures[J]. Nanoscale ,2014,6(4):1922-1945. [61] Li H,Liu L,Yang F. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup[J]. Journal of Materials Chemistry A ,2013,1(10):3446-3453. [62] Chen P,Yang J J,Li S S, et al . Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy ,2013,2(2):249-256. [63] Zhao Y,Hu C,Hu Y, et al . A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie ,2012,124(45):11533-11537. [64] Zhao Y,Liu J,Hu Y, et al . Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials ,2013,25(4):591-595. [65] Wu Z S,Winter A,Chen L, et al . Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Advanced Materials ,2012,24(37):5130-5135. [66] Zhao J,Ren W,Cheng H M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations[J]. Journal of Materials Chemistry ,2012,22(38):20197-20202. [67] Huang J,Li G,Yang Y. A Semi-transparent plastic solar cell fabricated by a lamination process[J]. Advanced Materials ,2008,20(3):415-419. [68] Chen C C,Dou L,Zhu R, et al . Visibly transparent polymer solar cells produced by solution processing[J]. ACS Nano ,2012,6(8):7185-7190. [69] Yang Y,Jeong S,Hu L, et al . Transparent lithium-ion batteries[J]. Proceedings of the National Academy of Sciences ,2011,108(32):13013-13018. [70] Jung H Y,Karimi M B,Hahm M G, et al . Transparent,flexible supercapacitors from nano-engineered carbon films[J]. Scientific Reports ,2012,2:773. [71] Niu Z,Zhou W,Chen J, et al . A Repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors[J]. Small ,2013,9(4):518-524. [72] Chen T,Xue Y,Roy A K, et al . Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes[J]. ACS Nano ,2013,8(1):1039-1046. [73] Dietz H,Niepraschk H,Wiesener K, et al . Premature capacity loss in lead/acid batteries with antimony-free grids during cycling under constant-voltage-charging conditions 1. Characterization and causes of the phenomenon[J]. Journal of Power Sources ,1993,46(2):191-202. [74] Guo Y,Tang S,Meng G, et al . Failure modes of valve-regulated lead-acid batteries for electric bicycle applications in deep discharge[J]. Journal of Power Sources ,2009,191(1):127-133. [75] Nakamura K,Shiomi M,Takahashi K, et al . Failure modes of valve-regulated lead/acid batteries[J]. Journal of Power Sources ,1996,59(1):153-157. [76] Moseley P T. Consequences of including carbon in the negative plates of valve-regulated lead-acid batteries exposed to high-rate partial-state-of-charge operation[J]. Journal of Power Sources ,2009,191(1):134-138. [77] Shane R,Enos D G,Hund T D. Understanding the function and performance of carbon-enhanced lead-acid batteries:Milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1:October through December 2010)[R]. Sandia National Laboratories ,2011. [78] Lam L T,Louey R. Development of ultra-battery for hybrid-electric vehicle applications[J]. Journal of Power Sources ,2006,158(2):1140-1148. [79] Furukawa J,Takada T,Monma D, et al . Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type ultrabattery for micro-HEV applications[J]. Journal of Power Sources ,2010,195(4):1241-1245. [80] Xiang J,Ding P,Zhang H, et al . Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation[J]. Journal of Power Sources ,2013,241:150-158. [81] Pavlov D,Rogachev T,Nikolov P, et al . Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries[J]. Journal of Power Sources ,2009,191(1):58-75. [82] Ebner E,Burow D,Panke J, et al . Carbon blacks for lead-acid batteries in micro-hybrid applications:Studied by transmission electron microscopy and Raman spectroscopy[J]. Journal of Power Sources ,2013,222:554-560. [83] Saravanan M,Sennu P,Ganesan M, et al . Multi-walled carbon nanotubes percolation network enhanced the performance of negative electrode for lead-acid battery[J]. Journal of the Electrochemical Society ,2013,160(1):A70-A76. [84] Swogger S W,Everill P,Dubey D P, et al . Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J]. Journal of Power Sources ,2014,261:55-63. [85] Ma J L,Wang D L,Chen F,Fang M X. Synthesis and characterization of lead sulfate/graphene nano sheets composites as anode materials for lead acid battery[J]. Chinese Journal of Inorganic Chemistry (无机材料学报),2013,29(9):1935-1941. [86] Hong B,Yu X,Jiang L, et al . Hydrogen evolution inhibition with diethylenetriamine modification of activated carbon for a lead-acid battery[J]. RSC Advances ,2014,4(63):33574-33577. [87] Zhao L,Chen B,Wu J, et al . Study of electrochemically active carbon,Ga 2 O 3 and Bi 2 O 3 as negative additives for valve-regulated lead-acid batteries working under high-rate,partial-state-of-charge conditions[J]. Journal of Power Sources ,2014,248:1-5. |