储能科学与技术 ›› 2015, Vol. 4 ›› Issue (4): 374-381.doi: 10.3969/j.issn.2095-4239.2015.04.005
辛培明, 金波, 侯甲子, 严庆光, 钟晓斌, 王环环, 高凡
收稿日期:
2014-12-09
出版日期:
2015-08-19
发布日期:
2015-08-19
通讯作者:
金波,副教授,研究方向为锂离子电池、锂硫电池及固体聚合物电解质,E-mail:jinbo@jlu.edu.cn。
作者简介:
辛培明(1988—),男,硕士研究生,研究方向为锂硫电池,E-mail:xpm0128@126.com
基金资助:
XIN Peiming, JIN Bo, HOU Jiazi, YAN Qingguang, ZHONG Xiaobin, WANG Huanhuan, GAO Fan
Received:
2014-12-09
Online:
2015-08-19
Published:
2015-08-19
摘要: 锂硫电池作为一种非常有前途的高能化学电源,随着电动汽车和便携式电子设备的发展,因其高理论比容量(1675 mA·h/g)和高理论能量密度(2600 W·h/kg)引起了人们的广泛关注。然而,锂硫电池发展过程中的一些挑战不可避免,包括硫较低的离子和电子导电性,较差的循环性以及生成的多硫化物易溶于有机溶剂等缺点,制约了锂硫电池的发展。本文结合近年来锂硫电池正极材料的研究进展,简要阐述了锂硫电池正极材料的研究现状、问题及面临的挑战。锂硫电池由于其发展中面临技术瓶颈难以突破,导致现在还无法大规模的应用,因而对其性能的改进也就成了当今的研究热点。硫电极材料电导率低、循环性能差,可以通过碳包覆或者掺杂改善材料性能。然而由于成本和技术问题,大部分锂硫电池正极材料目前还主要处于研究试验阶段。因此,在提高材料性能的前提下,通过碳包覆或者掺杂改善工艺,探索一条适合工业化生产的道路是下一阶段研究的重点。
中图分类号:
辛培明, 金波, 侯甲子, 严庆光, 钟晓斌, 王环环, 高凡. 锂锂硫电池正极材料研究进展[J]. 储能科学与技术, 2015, 4(4): 374-381.
XIN Peiming, JIN Bo, HOU Jiazi, YAN Qingguang, ZHONG Xiaobin, WANG Huanhuan, GAO Fan. Research progress of cathode materials for lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2015, 4(4): 374-381.
[1] Jiang H,Fu Y,Hu Y J, et al . Hollow LiMn 2 O 4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances[J]. Small ,2014,10:1096-1100. [2] Lee S H,Cho Y H,Song H K, et al . Carbon-coated single-crystal LiMn 2 O 4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries[J] Angewandte Chemie International Edition ,2012,51:8748-8752. [3] Mun J Y,Yim T E,Park J H, et al . Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO 2 for advanced, safe lithium-ion batteries[J]. Scientific Reports ,2014,4:5802. [4] Xiong X H,Ding D,Bu Y F, et al . Enhanced electrochemical properties of a LiNiO 2 -based cathode material by removing lithium residues with (NH 4 ) 2 HPO 4 [J]. Journal of Materials Chemistry A ,2014,2:11691-11696. [5] Jin B,Jin E M,Park K H, et al . Electrochemical properties of LiFePO 4 -multiwalled carbon nanotubes composite cathode materials for lithium polymer battery[J]. Electrochemistry Communications ,2008,10:1537-1540. [6] Sarasketa-Zabala E,Gandiaga I,Martinez-Laserna E, et al . Cycle ageing analysis of a LiFePO 4 /graphite cell with dynamic model validations:Towards realistic lifetime predictions[J]. Journal of Power Sources ,2015,275:573-587. [7] Jeong J S,Lee H W,Choi J C, et al . Effect of LiFePO 4 cathode density and thickness on electrochemical performance of lithium metal polymer batteries prepared by in situ thermal polymerization[J]. Electrochimica Acta ,2015,154:149-156. [8] Xiong X H,Wang Z X,Yan G C, et al . Role of V 2 O 5 coating on LiNiO 2 -based materials for lithium ion battery[J]. Journal of Power Sources ,2014,245:183-193. [9] Chen H R,Dawson J A,Harding J H. Effects of cationic substitution on structural defects in layered cathode materials LiNiO 2 [J]. Journal of Materials Chemistry A ,2014,2:7988-7996. [10] Gao X F,Sha Y J,Lin Q, et al . Combustion-derived nanocrystalline LiMn 2 O 4 as a promising cathode material for lithium-ion batteries[J]. Journal of Power Sources ,2015,275:38-44. [11] Xia L,Xia Y G,Liu Z P, et al . Thiophene derivatives as novel functional additives for high-voltage LiCoO 2 operations in lithium ion batteries[J]. Electrochimica Acta ,2015,151:429-436. [12] Hu G R,Cao J C,Peng Z D, et al . Enhanced high-voltage properties of LiCoO 2 coated with Li[Li 0.2 Mn 0.6 Ni 0.2 ]O 2 [J]. Electrochimica Acta ,2014,149:49-55. [13] Chung S H,Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials ,2014,26:7352-7357. [14] Jin B,Kim J U,Gu H B. Electrochemical properties of lithium-sulfur batteries[J]. Journal of Power Sources ,2003,117:148-152. [15] Manthiram A,Fu Y Z,Su Y S. Challenges and prospects of lithium sulfur batteries[J]. Accounts of Chemical Research ,2013,46(5):1125-1134. [16] Chen L,Shaw L L. Recent advances in lithium sulfur batteries[J]. Journal of Power Sources ,2014,267:770-783. [17] Ding N,Chien S W,Andy H T S. Key parameters in design of lithium sulfur batteries[J]. Journal of Power Sources ,2014,269:111-116. [18] Song J C,Choo M J,Noh H J, et al . Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries[J]. Chem. Sus. Chem. ,2014,7:3341-3346. [19] Yin Y X,Xin S,Guo Y G, et al . Lithium-sulfur batteries:Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition ,2013,52:13186-13200. [20] Li Z,Yuan L X,Yi Z Q, et al . Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials ,2014,4:1301473. [21] Xin S,Yin Y X ,Wan L J, et al . Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan[J]. Particle & Particle System Characterization ,2013,30:321-325. [22] Wu H B,Wei S Y,Zhang L, et al . Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry-A European Journal ,2013,19:10804-10808. [23] Wang H Q,Zhang C F,Chen Z X, et al . Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries[J]. Carbon ,2015,81:782-787. [24] Chen S R,Zhai Y P,Xu G L, et al . Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery[J]. Electrochimica Acta ,2011,56:9549-9555. [25] Li X L,Cao Y L,Qi W, et al . Optimization of mesoporous carbon structures for lithium-sulfur battery applications[J]. Journal of Materials Chemistry ,2011,21:16603-16610. [26] Wang D W,Zhou G M,Li F, et al . A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries[J]. Physical Chemistry Chemical Physics ,2012,14:8703-8710. [27] Tao X Y,Chen X R,Xia Y, et al . Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A ,2013,1:3295-3301. [28] He G,Mandlmeier B,Schuster J, et al . Bimodal mesoporous carbon nanofibers with high porosity:Freestanding and embedded in membranes for lithium-sulfur batteries[J]. Chemistry of Materials ,2014,26:3879-3886. [29] Wang J,Wu Y H,Shi Z Q, et al . Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for lithium-sulfur batteries[J]. Electrochimica Acta ,2014,144:307-314. [30] Ji X L,Lee K T,Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials ,2009,8:500-506. [31] Liang C D,Dudney N J,Howe J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials ,2009,21:4724-4730. [32] Schuster J,He G,Mandlmeier B, et al . Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition ,2012,51:3591-3595. [33] Yin L C,Wang J L,Yang J, et al. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries[J]. Journal of Materials Chemistry ,2011,21:6807-6810. [34] Chung S H,Manthiram A. High-performance Li-S batteries with an ultra-light weight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters ,2014,5:1978-1983. [35] Chen J J,Zhang Q,Shi Y N, et al . A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries[J]. Physical Chemistry Chemical Physics ,2012,14:5376-5382. [36] Wang D L,Yu Y C,Zhou W D, et al . Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics ,2013,15:9051-9057. [37] Chen J J,Jia X,She Q J, et al . The preparation of nano-sulfur/MWCNTs and its electrochemical performance[J]. Electrochimica Acta ,2010,55:8062-8066. [38] Yuan L X,Yuan H P,Qiu X P, et al . Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. Journal of Power Sources ,2009,189:1141-1146. [39] Ma X Z,Jin B,Xin P M, et al . Multiwalled carbon nanotubes-sulfur composites with enhanced electrochemical performance for lithium/sulfur batteries[J]. Applied Surface Science ,2014,307:346-350. [40] Su Y S,Manthiram A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical Communications ,2012,48:8817-8819. [41] Li N W,Zheng M B,Lu H L, et al . High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communications ,2012,48:4106-4108. [42] Zhang J,Dong Z M,Wang X L, et al . Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries[J]. Journal of Power Sources ,2014,270:1-8. [43] Yun Y S,Le V C,Kim H G, et al . Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries[J]. Journal of Power Sources ,2014,262:79-85. [44] Wang J Z,Lu L,Choucair M, et al . Sulfur-graphene composite for rechargeable lithium batteries[J]. Journal of Power Sources ,2011,196:7030-7034. [45] Zhang C Z,Mahmood N,Yin H, et al . Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials ,2013,25:4932-4937. [46] Xu C M,Wu Y S,Zhao X Y, et al . Sulfur/three-dimensional graphene composite for high performance lithium sulfur batteries[J]. Journal of Power Sources ,2015,275:22-25. [47] Liu Y,Guo J X,Zhang J, et al . Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries[J]. Applied Surface Science ,2015,324:399-404. [48] Wang H L,Yang Y,Liang Y Y, et al . Graphene-wrappedsulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters ,2011,11:2644-2647. [49] Zhou G M,Yin L C,Wang D W, et al . Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium sulfur batteries[J]. ACS Nano ,2013,7:5367-5375. [50] Wang Y X,Huang L,Sun L C, et al . Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance[J]. Journal of Materials Chemistry ,2012,22:4744-4750. [51] Li S,Xie M,Liu J B, et al . Layer structured sulfur/expanded graphite composite as cathode for lithium battery[J]. Electrochemical and Solid-State Letters ,2011,14:A105-A107. [52] Wang J,Chen J,Konstantinov K, et al . Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries[J]. Electrochimica Acta ,2006,51:4634-4638. [53] Liang X,Wen Z Y,Liu Y, et al . Preparation and characterization of sulfur-polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries[J]. Solid State Ionics ,2011,192:347-350. [54] Fu Y Z,Manthiram A. Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C ,2012,116:8910-8915. [55] Li W Y,Zhang Q F,Zheng G Y, et al . Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Letters ,2013,13:5534-5540. [56] Guo Jin(郭锦),Zhang Mingang(张敏刚),Yan Shijian(闫时建), et al . High specific capacity composite cathode materials for lithium-sulfur batteries[J]. Energy Storage Science and Technology (储能科学与技术),2014,3(4):345-352. [57] Zhao X H,Kim J K,Ahn H J, et al . A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries[J]. Electrochimica Acta ,2013,109:145-152. [58] Wu F,Chen J Z,Li L, et al . Improvement of rate and cycle performance by rapid polyaniline coating of a MWCNT/sulfur cathode[J]. The Journal of Physical Chemistry C ,2011,115:24411-24417. [59] Li G C,Li G R,Ye S H, et al . A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials ,2012,2:1238-1245. [60] Zhou W D,Yu Y C ,Chen H, et al . Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Society ,2013,135:16736-16743. [61] Zhang Z A,Li Q,Lai Y Q, et al . Confine sulfur in polyaniline-decorated hollow carbon nanofiber hybrid nanostructure for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C ,2014,118:13369-13376. [62] Wu F,Wu S X,Chen R J, et al. Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters ,2010,13:A29-A31. [63] Sun M M,Zhang S C,Jiang T, et al . Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries[J]. Electrochemistry Communications ,2008,10:1819-1822. [64] Zhang Y G,Bakenov Z,Zhao Y, et al . One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries[J]. Journal of Power Sources ,2012,208:1-8. [65] Fu Y Z,Manthiram A. Enhanced cyclability of lithium-sulfur batteries by a polymer acid doped polypyrrole mixed ionic-electronic conductor[J]. Chemistry of Materials ,2012,24:3081-3087. [66] Xiao L F,Cao Y L,Xiao J, et al . A soft approach to encapsulate sulfur:Polyaniline nanotubes for lithium­sulfur batteries with long cycle life[J]. Advanced Materials ,2012,24:1176-1181. [67] Wu F,Chen J Z,Chen R J ,et al . Sulfur/polythiophene with a core/shell structure:Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries[J]. The Journal of Physics Chemical C ,2011,115:6057-6063. [68] Li J Y,Ding B,Xu G Y, et al . Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO 2 sphere cathode for advanced Li-S batteries[J]. Nanoscale ,2013,5:5743-5746. [69] Li Q,Zhang Z A,Zhang K, et al . Synthesis and electrochemical performance of TiO 2 -sulfur composite cathode materials for lithium-sulfur batteries[J]. Journal of Solid State Electrochemistry ,2013,17:2959-2965. [70] Zhang Y,Wang L Z,Zhang A Q, et al . Novel V 2 O 5 /S composite cathode material for the advanced secondary lithium batteries[J]. Solid State Ionics ,2010,181:835-838. [71] Pang Q,Kundu D,Cuisinier M, et al . Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications ,2014,5:4759. [72] Seh Z W,Li W Y,Cha J J, et al . Sulphur-TiO 2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications ,2013,4:1331. [73] Ma X Z,Jin B,Wang H Y, et al . S-TiO 2 composite cathode materials for lithium/sulfur batteries[J]. Journal of Electroanalytical Chemistry ,2015,736:127-131. [74] Li W,Hicks-Garner J,Wang J, et al . V 2 O 5 polysulfide anion barrier for long-lived Li-S batteries[J]. Chemistry of Materials ,2014,26:3403-3410. [75] Yang Z C,Guo J C,Das S K, et al . In situ synthesis of lithium sulfide-carbon composites as cathode materials for rechargeable lithium batteries[J]. Journal of Materials Chemistry A ,2013,1,1433-1440. [76] Zheng S Y,Chen Y,Xu Y H, et al . In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries[J]. ACS Nano ,2013,7:10995-11003. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[3] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[4] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[5] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[6] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[7] | 孙玉琦, 魏凤, 周洪, 周超峰. 专利视域下全球锂硫电池技术竞争态势分析[J]. 储能科学与技术, 2022, 11(5): 1657-1666. |
[8] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[9] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[10] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[11] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
[12] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[13] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[14] | 郭云琪, 盛楠, 朱春宇, 饶中浩. 基于模板法制备氧化铝纤维及其石蜡复合相变材料热性能[J]. 储能科学与技术, 2022, 11(2): 511-520. |
[15] | 田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||