储能科学与技术 ›› 2015, Vol. 4 ›› Issue (5): 515-525.doi: 10.3969/j.issn.2095-4239.2015.05.010
闫勇, 林明翔, 陈彬, 王昊, 胡飞, 詹元杰, 陈宇阳, 赵俊年, 武怿达, 俞海龙, 刘燕燕, 贲留斌, 黄学杰
收稿日期:
2015-10-15
出版日期:
2015-10-19
发布日期:
2015-10-19
通讯作者:
黄学杰,研究员,E-mail:xjhuang@jphy.ac.an。
作者简介:
闫勇(1988—),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:yanyong19881202@126.com
YAN Yong, LIN Mingxiang, CHEN Bin, WANG Hao, HU Fei, ZHAN Yuanjie, CHEN Yuyang, ZHAO Junnian, WU Yida, YU Hailong, LIU Yanyan, BEN Liubin, HUANG Xuejie
Received:
2015-10-15
Online:
2015-10-19
Published:
2015-10-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以“lithium”和“batter*”为关键词检索了Web of Science从2015年6月1日至2015年7月31日上线的锂电池研究论文,共有1573篇,选择其中100篇加以评论。正极材料主要研究了富锂相材料、三元材料和尖晶石材料的结构演变及掺杂和表面包覆对其循环寿命的影响。高容量的硅基复合负极材料研究侧重于纳米材料、复合材料、黏结剂及反应机理研究,电解液添加剂、固态电解质、锂空电池、锂硫电池的论文也有多篇。理论模拟工作包括电极材料体相和界面结构以及电解质的输运性质,除了以材料为主的研究之外,针对电池的失效分析、热安全分析的研究论文也有多篇。
中图分类号:
闫勇, 林明翔, 陈彬, 王昊, 胡飞, 詹元杰, 陈宇阳, 赵俊年, 武怿达, 俞海龙, 刘燕燕, 贲留斌, 黄学杰. 锂电池百篇论文点评(2015.6.1—2015.7.31)[J]. 储能科学与技术, 2015, 4(5): 515-525.
YAN Yong, LIN Mingxiang, CHEN Bin, WANG Hao, HU Fei, ZHAN Yuanjie, CHEN Yuyang, ZHAO Junnian, WU Yida, YU Hailong, LIU Yanyan, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (June 1,2015 to July 31,2015)[J]. Energy Storage Science and Technology, 2015, 4(5): 515-525.
[1] Liao X L,Huang Q M,Mai S W, et al . Understanding self-discharge mechanism of layered nickel cobalt manganese oxide at high potential[J]. Journal of Power Sources ,2015,286:551-557. [2] Hwang S,Kim S M,Bak S M, et al . Using real-time electron microscopy to explore the effects of transition-metal composition on the local thermal stability in charged Li x Ni y Mn z Co 1- y - z O 2 cathode materials[J]. Chemistry of Materials ,2015,27(11):3927-3935. [3] Cherkashinin G,Motzko M,Schulz N, et al . Electron spectroscopy study of Li Ni,Co,Mn O 2- /electrolyte interface:Electronic structure, interface composition, and device implications[J]. Chemistry of Materials ,2015,27(8):2875-2887. [4] Wang Z,Huang S,Chen B, et al . Infiltrative coating of microspheres with LiNi 0.5 Co 0.2 Mn 0.3 O 2 layer-structured LiTiO 2 :Towards superior cycling performances for Li-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(47):19983-19987. [5] Jo C H,Cho D H,Noh H J, et al . An effective method to reduce residual lithium compounds on Ni-rich LiNi 0.6 Co 0.2 Mn 0.2 O 2 active material using a phosphoric acid derived Li 3 PO 4 nanolayer[J]. Nano Research ,2015,8(5):1464-1479. [6] Wei Z,Zhang W,Wang F, et al . Eliminating voltage decay of lithium-rich Li 1.14 Mn 0.54 Ni 0.14 Co 0.14 O 2 cathodes by controlling the electrochemical process[J]. Chemistry-A European Journal ,2015,21(20):7503-7510. [7] Li J,Camardese J,Shunmugasundaram R, et al . Synthesis and characterization of the lithium-rich core-shell cathodes with low irreversible capacity and mitigated voltage fade[J]. Chemistry of Materials ,2015,27(9):3366-3377. [8] Xu M,Chen Z,Zhu H, et al . Mitigating capacity fade by constructing highly ordered mesoporous Al 2 O 3 /polyacene double-shelled architecture in Li-rich cathode materials[J]. Journal of Materials Chemistry A ,2015,3(26):13933-13945. [9] Wang Y,Yang Z,Qian Y, et al . New insights into improving rate performance of lithium-rich cathode material[J]. Adv . Mater .,2015,27(26):3915-3920. [10] Iddir H,Key B,Dogan F, et al . Pristine-state structure of lithium-ion-battery cathode material Li 1.2 Mn 0.4 Co 0.4 O 2 derived from NMR bond pathway analysis[J]. Journal of Materials Chemistry A ,2015,3(21):11471-11477. [11] Patel R L,Xie H,Park J, et al . Significant capacity and cycle-life improvement of lithium-ion batteries through ultrathin conductive film stabilized cathode particles[J]. Advanced Materials Interfaces ,2015,2(8):doi: 10.1002/admi.20150046. [12] Shimoda K,Murakami M,Komatsu H, et al . Delithiation/lithiation behavior of LiNi 0.5 Mn 1.5 O 4 studied by in situ and ex situ 6,7 Li NMR spectroscopy[J]. The Journal of Physical Chemistry C,2015,119(24):13472-13480. [13] Bauer S,De Biasi L,Glatthaar S, et al . In operando study of the high voltage spinel cathode material LiNi 0.5 Mn 1.5 O 4 using two dimensional full-field spectroscopic imaging of Ni and Mn[J]. Physical Chemistry Chemical Physics ,2015,17(25):16388-16397. [14] Xu G L,Qin Y,Ren Y, et al . The migration mechanism of transition metal ions in LiNi 0.5 Mn 1.5 O 4 [J]. Journal of Materials Chemistry A ,2015,3(24):13031-13038. [15] Kim J H,Pieczonka N P W,Lu P, et al . in situ formation of a cathode-electrolyte interface with enhanced stability by titanium substitution for high voltage spinel lithium-ion batteries[J]. Advanced Materials Interfaces ,2015,2(10):doi: 10.1002/admi.201500109. [16] Li Y,Weker J N,Gent W E, et al . Dichotomy in the lithiation pathway of ellipsoidal and platelet LiFePO 4 particles revealed through nanoscale operando state-of-charge imaging[J]. Advanced Functional Materials ,2015,25(24):3677-3687. [17] Yu Y S,Kim C,Shapiro D A, et al . Dependence on crystal size of the nanoscale chemical phase distribution and fracture in Li x FePO 4 [J]. Nano Lett .,2015,15(7):4282-4288. [18] Honda Y,Muto S,Tatsumi K, et al . Microscopic mechanism of path-dependence on charge-discharge history in lithium iron phosphate cathode analysis using scanning transmission electron microscopy and electron energy-loss spectroscopy spectral imaging[J]. Journal of Power Sources ,2015,291:85-94. [19] Cintora-Juarez D,Perez-Vicente C,Kazim S, et al . Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries[J]. Journal of Materials Chemistry A ,2015,3(27):14254-14262. [20] Chen R Y,Ren S H,Knapp M, et al . Disordered lithium-rich oxyfluoride as a stable host for enhanced Li + intercalation storage[J]. Advanced Energy Materials ,2015,5(9):doi: 10.1002/aenm.201401814. [21] Yabuuchi N,Takeuchi M,Nakayama M, et al . High-capacity electrode materials for rechargeable lithium batteries:Li 3 NbO 4 -based system with cation-disordered rocksalt structure[J]. Proceedings of the National Academy of Sciences of the United States of America ,2015,112(25):7650-7655. [22] Kim J C,Seo D H,Ceder G. Theoretical capacity achieved in a LiMn 0.5 Fe 0.4 Mg 0.1 BO 3 cathode by using topological disorder[J]. Energy & Environmental Science ,2015,8(6):1790-1798. [23] Dunst A,Sternad M,Epp V, et al . Fast Li + self-diffusion in amorphous Li-Si electrochemically prepared from semiconductor grade, monocrystalline silicon:Insights from spin-locking nuclear magnetic relaxometry[J]. The Journal of Physical Chemistry C ,2015,119(22):12183-12192. [24] Choi S,Bok T,Ryu J, et al . Revisit of metallothermic reduction for macroporous Si:Compromise between capacity and volume expansion for practical Li-ion battery[J]. Nano Energy ,2015,12:161-168. [25] Ahn J,Lee K J,Bak W, et al . Elucidating relationships between structural properties of nanoporous carbonaceous shells and electrochemical performances of Si@carbon anodes for lithium-ion batteries[J]. Journal of Physical Chemistry C ,2015,119(19):10255-10265. [26] Li F S,Wu Y S,Chou J, et al . A dimensionally stable and fast- discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating[J]. Chemical Communications ,2015,51(40):8429-8431. [27] Huang X K,Mao S,Chang J B, et al . Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin[J]. RSC Advances ,2015,5(48):38660-38664. [28] Qu F,Li C L,Wang Z M, et al . Eutectic nano-droplet template injection into bulk silicon to construct porous frameworks with concomitant conformal coating as anodes for Li-ion batteries[J]. Scientific Reports ,2015,5:doi: 10.1038/srep/0381. [29] Zeng S,Liu D T,Chen Y, et al . Enabling a high capacity and long cycle life for nano-Si anodes by building a stable solid interface with a Li + -conducting polymer[J]. Journal of Materials Chemistry A ,2015,3(18):9938-9944. [30] Zhao J,Lu Z,Wang h, et al . Artificial solid electrolyte interphase-protected Li x Si nanoparticles:An efficient and stable prelithiation reagent for lithium-ion batteries[J]. J. Am. Chem. Soc .,2015,137(26):8372-8375. [31] Liu J,Zhang Q,Zhang T, et al . A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries[J]. Advanced Functional Materials ,2015,25(23):3599-3605. [32] Ning L,Jianbin Z,Yongchun Z, et al . Embedding silicon nanoparticles in graphene based 3D framework by cross-linking reaction for high performance lithium ion batteries[J]. Journal of Materials Chemistry A ,2014,2(46):19604-19608. [33] Yang L Y,Li H Z,Liu J, et al . Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Scientific Reports ,2015,5,doi:10.1038/srep10908. [34] An Y,Wood B C,Ye J, et al . Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design[J]. Physical Chemistry Chemical Physics ,2015,17(27):17718-17728. [35] Kim H,Son Y,Park C, et al . Germanium silicon alloy anode material capable of tunable overpotential by nanoscale Si segregation[J]. Nano Lett .,2015,15(6):4135-4142. [36] Mukai K,Kato Y. Role of oxide ions in thermally activated lithium diffusion of Li Li 1/3 Ti 5/3 O 4 :X-ray diffraction measurements and raman spectroscopy[J]. Journal of Physical Chemistry C ,2015,119(19):10273-10281. [37] Fehse M,Ventosa E. Is TiO 2 (B) the future of titanium-based battery materials?[J]. Chem . Plus. Chem. ,2015,80(5):785-795. [38] Gonzalez J,Sun K,Huang M, et al . X-ray microtomography characterization of Sn particle evolution during lithiation/delithiation in lithium ion batteries[J]. Journal of Power Sources ,2015,285:205-209. [39] Nam D H,Kim J W,Lee J H, et al . Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes[J]. Journal of Materials Chemistry A ,2015,3(20):11021-11030. [40] Eom K,Jung J,Lee J T, et al . Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery[J]. Nano Energy ,2015,12:314-321. [41] Bernardo P,Le Meins J M,Vidal L, et al . Influence of graphite edge crystallographic orientation on the first lithium intercalation in Li-ion battery[J]. Carbon ,2015,91:458-467. [42] Steiger J,Richter G,Wenk M, et al . Comparison of the growth of lithium filaments and dendrites under different conditions[J]. Electrochemistry Communications ,2015,50:11-14. [43] Leenheer A J,Jungjohann K L,Zavadil K R, et al . Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy[J]. ACS Nano ,2015,9(4):4379-4389. [44] Liang Z,Zheng G Y,Liu C, et al . Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters ,2015,15(5):2910-2916. [45] Schwobel A,Hausbrand R,Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission[J]. Solid State Ionics ,2015,273:51-54. [46] Lee H,Lee D J,Kim Y J, et al . A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries[J]. Journal of Power Sources ,2015,284:103-108. [47] Nam Y J,Cho S J,Oh D Y, et al . Bendable and thin sulfide solid electrolyte film:A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Letters ,2015,15(5):3317-3323. [48] Han F,Gao T,Zhu Y, et al . A battery made from a single material[J]. Adv . Mater .,2015,27(23):3473-3483. [49] Jalem R,Rushton M J D,Manalastas W, et al . Effects of gallium doping in garnet-type Li 7 La 3 Zr 2 O 12 solid electrolytes[J]. Chemistry of Materials ,2015,27(8):2821-2831. [50] Zhang J S,Bai Y,Sun X G, et al . Superior conductive solid-like electrolytes:nanoconfining liquids within the hollow structures[J]. Nano Letters ,2015,15(5):3398-3402. [51] Ortiz D,Steinmetz V,Durand D, et al . Radiolysis as a solution for accelerated ageing studies of electrolytes in lithium-ion batteries[J]. Nature Communications ,2015,6:doi: 10.1038/nucomms7950. [52] Weber W,Kraft V,Grutzke M, et al . Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte[J]. Journal of Chromatography A ,2015,1394:128-136. [53] Han J G,Lee S J,Lee J, et al . Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2015,7(15):8319-8329. [54] Koo B,Lee J,Lee Y, et al . Vinylene carbonate and tris(trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60 ℃[J]. Electrochimica Acta ,2015,173:750-756. [55] Wang R,Li X,Wang Z, et al . Comparative study of lithium bis (oxalato) borate and lithium bis (fluorosulfonyl) imide on lithium manganese oxide spinel lithium-ion batteries[J]. Journal of Alloys and Compounds ,2015,624:74-84. [56] Xia J,Ma L,Dahn J R. Improving the long-term cycling performance of lithium-ion batteries at elevated temperature with electrolyte additives[J]. Journal of Power Sources ,2015,287:377-385. [57] Xu M,Zhou L,Dong Y, et al . Improved performance of high voltage graphite/LiNi 0.5 Mn 1.5 O 4 batteries with added lithium tetramethyl borate[J]. ECS Electrochemistry Letters ,2015,4(8):A83-A86. [58] Mehta M,Bevara V,Andrei P. Maximum theoretical power density of lithium-air batteries with mixed electrolyte[J]. Journal of Power Sources ,2015,286:299-308. [59] Zhang J T,Zhao Z H,Xia Z H, et al . A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology ,2015,10(5):444-452. [60] Jeong Y S,Park J B,Jung H G, et al . Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries[J]. Nano Lett. ,2015,15(7):4261-4268. [61] Dong Y,Liu S,Wang Z, et al . Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium-sulfur batteries[J]. Nanoscale ,2015,7(17):7569-7573. [62] Zhou Y,Zhou C,Li Q, et al . Enabling prominent high-rate and cycle performances in one lithium-sulfur battery:Designing permselective gateways for Li + transportation in holey-CNT/S cathodes[J]. Adv . Mater .,2015,27(25):3774-3781. [63] Zhang C,Lin Y,Liu J. Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium-sulfur batteries[J]. Journal of Materials Chemistry A ,2015,3(20):10760-10766. [64] Guangmin Z,Yubao Z,Manthiram A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries[J]. Advanced Energy Materials ,2015,5(9):1402263-1402273 [65] Hwa Y,Zhao J,Cairns E J. Lithium sulfide (Li 2 S)/graphene oxide nanospheres with conformal carbon coating as a high-rate, long-life cathode for Li/S cells[J]. Nano Letters ,2015,15(5):3479-3486. [66] Cheng X B,Peng H J,Huang J Q, et al . Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries[J]. ACS Nano ,2015,9(6):6373-6382. [67] Lee S K,Oh S M,Park E, et al . Highly cyclable lithium-sulfur batteries with a dual-type sulfur cathode and a lithiated si/sio x nanosphere anode[J]. Nano Letters ,2015,15(5):2863-2868. [68] Wu F,Lee J T,Nitta N, et al . Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries:mechanisms of performance enhancement[J]. Adv . Mater .,2015,27(1):101-108. [69] Wang L,Wang Y,Xia Y. A high performance lithium-ion sulfur battery based on a Li 2 S cathode using a dual-phase electrolyte[J]. Energy & Environmental Science ,2015,8(5):1551-1558. [70] Kim H,Lee J,Ahn H, et al . Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries[J]. Nat . Commun .,2015,6:7278. [71] Kozen A C,Lin C F,Pearse A J, et al . Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano ,2015,9(6):5884-5892. [72] Bartlett A,Marcicki J,Rhodes K, et al . State of health estimation in composite electrode lithium-ion cells[J]. Journal of Power Sources ,2015,284:642-649. [73] Cornut R,Lepage D,Schougaard S B. Interpreting lithium batteries discharge curves for easy identification of the origin of performance limitations[J]. Electrochimica Acta ,2015,162:271-274. [74] Drake S J,Martin M,Wetz D A, et al . Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources ,2015,285:266-273. [75] Groot J,Swierczynski M,Stan A I, et al . On the complex ageing characteristics of high-power LiFePO 4 /graphite battery cells cycled with high charge and discharge currents[J]. Journal of Power Sources ,2015,286:475-487. [76] Ouyang M G,Chu Z Y,Lu L G, et al . Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles[J]. Journal of Power Sources ,2015,286:309-320. [77] Ping P,Wang Q S,Huang P F, et al . Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources ,2015,285:80-89. [78] Schuster E,Ziebert C,Melcher A, et al . Thermal behavior and electrochemical heat generation in a commercial 40 A·h lithium ion pouch cell[J]. Journal of Power Sources ,2015,286:580-589. [79] Tseng K H,Liang J W,Chang W C, et al . Regression models using fully discharged voltage and internal resistance for state of health estimation of lithium-ion batteries[J]. Energies ,2015,8(4):2889-2907. [80] Gambhire P,Ganesan N,Basu S, et al . A reduced order electrochemical thermal model for lithium ion cells[J]. Journal of Power Sources ,2015,290:87-101. [81] Zheng Y,Ouyang M,Lu L, et al . Study on the correlation between state of charge and coulombic efficiency for commercial lithium ion batteries[J]. Journal of Power Sources ,2015,289:81-90. [82] Hsieh A G,Bhadra S,Hertzberg B J, et al . Electrochemical-acoustic time of flight:In operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science ,2015,8(5):1569-1577. [83] Wang F M,Rick J. Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to commercial type lithium ion batteries[J]. Solid State Ionics ,2014,268:31-34. [84] Kemper P,Li S E,Kum D. Simplification of pseudo two dimensional battery model using dynamic profile of lithium concentration[J]. Journal of Power Sources ,2015,286:510-525. [85] Abdel Monem M,Trad K,Omar N, et al . Lithium-ion batteries:Evaluation study of different charging methodologies based on aging process[J]. Applied Energy ,2015,152:143-155. [86] Zhang C,Santhanagopalan S,Sprague M A, et al . Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources ,2015,290:102-113. [87] Ulvestad A,Singer A,Clark J N, et al . Topological defect dynamics in operando battery nanoparticles[J]. Science ,2015,348(6241):1344-1347. [88] Foster J M,Gully A,Liu H, et al . Homogenization study of the effects of cycling on the electronic conductivity of commercial lithium-ion battery cathodes[J]. The Journal of Physical Chemistry C ,2015,119(22):12199-12208. [89] Nicolau B G,Garcia-Rey N,Dryzhakov B, et al . Interfacial processes of a model lithium ion battery anode observed, in situ ,with vibrational sum-frequency generation spectroscopy[J]. Journal of Physical Chemistry C ,2015,119(19):10227-10233. [90] Berkes B B,Jozwiuk A,Vracar M, et al . Online continuous flow differential electrochemical mass spectrometry with a realistic battery setup for high-precision, long-term cycling tests[J]. Analytical Chemistry ,2015,87(12):5878-5883. [91] Ding Y,Zhao Y,Yu G. A membrane-free ferrocene-based high-rate semiliquid battery[J]. Nano Lett . 2015,15(6):4108-4113. [92] Liu J L,Bian P W,Li J, et al . Gassing behavior of lithium titanate based lithium ion batteries with different types of electrolytes[J]. Journal of Power Sources ,2015,286:380-387. [93] Grutzke M,Monnighoff X,Horsthemke F, et al . Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents[J]. RSC Advances ,2015,5(54):43209-43217. [94] Zhan X,Shirpour M,Yang F. A thermodynamic perspective for formation of solid electrolyte interphase in lithium-ion batteries[J]. Electrochimica Acta ,2015,173:736-742. [95] Chen H M,Chen M,Adams S. Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes[J]. Physical Chemistry Chemical Physics ,2015,17(25):16494-16506. [96] Miara L J,Richards W D,Wang Y E, et al . First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets[J]. Chemistry of Materials ,2015,27(11):4040-4047. [97] Kawaguchi T,Fukuda K,Tokuda K, et al . Roles of transition metals interchanging with lithium in electrode materials[J]. Physical Chemistry Chemical Physics ,2015,17(21):14064-14070. [98] Leung K,Leenheer A. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes[J]. Journal of Physical Chemistry C ,2015,119(19):10234-10246. [99] Shiiba H,Zettsu N,Nakayama M, et al . Defect formation energy in spinel LiNi 0.5 Mn 1.5 O 4 -delta using Ab initio DFT calculations[J]. Journal of Physical Chemistry C ,2015,119(17):9117-9124. [100] Kang J,Han B. First-principles study on the thermal stability of LiNiO 2 materials coated by amorphous Al 2 O 3 with atomic layer thickness[J]. ACS Appl . Mater . Interfaces ,2015,7(21):11599-11603. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||