储能科学与技术 ›› 2016, Vol. 5 ›› Issue (3): 292-302.doi: 10.3969/j.issn.2095-4239.2016.03.005
刘 黎1,2,王先友1,曹国忠2
收稿日期:
2016-03-15
修回日期:
2016-04-03
出版日期:
2016-05-01
发布日期:
2016-05-01
通讯作者:
曹国忠,教授,E-mail:gzcao@u.washington.edu。
作者简介:
刘黎(1982—),女,博士,副教授,研究方向为二次电池材料与器件,E-mail:liulili1203@126.com
基金资助:
LIU Li1,2, WANG Xianyou1, CAO Guozhong2
Received:
2016-03-15
Revised:
2016-04-03
Online:
2016-05-01
Published:
2016-05-01
摘要: 钛基材料具有环境友好、安全性好、稳定性好等优点而备受关注。但是钛基材料带隙宽,电子导电性差,比容量低限制了其在钠离子电池领域的发展与应用。本文主要综述了TiO2、Na2TinO2n+1、NaTi2(PO4)3三类钛基材料的结构、电化学性能、改性方法和相关储钠机理。评述了钛基材料存在的问题并展望了其发展前景。今后的研究可以从以下几方面开展:① 深入研究钛基负极材料储钠机理;② 研究多种阳、阴离子掺杂对钛基材料的电子结构的影响,从根本上提高钛基材料的电子导电性;③ 与高比容量负极材料复合,获得兼具稳定性与高比容量优点的复合材料;④ 设计合成具有多级、三维结构的钛基复合负极材料,进一步提高材料的循环稳定性、倍率性能;⑤ 开发新型结构的钛基负极材料。
刘 黎1,2,王先友1,曹国忠2. 钠离子电池钛基负极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 292-302.
LIU Li1,2, WANG Xianyou1, CAO Guozhong2. Titanium-based materials as anode materials for sodium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 292-302.
[1] PASCAL G E,FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28:1172-1175.
[2] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958.
[3] HONG K L,QIE L,ZENG R,et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A,2014,2:12733-12738.
[4] LI Y,XU S,WU X,et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:71-77.
[5] WANG H G,WU Z,MENG F L,et al. Nitrogen-doped porous carbon nanosheets as low-cost,high-performance anode material for sodium-ion batteries[J]. Chemsuschem,2013,6(1):56-60.
[6] LUO W,SCHARDT J,BOMMIER C,et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A,2013,1:10662-10666.
[7] TANG K,FU L,WHITE R J,et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials,2012,2:873-877.
[8] XIONG H,SLATER MD,BALASUBRAMANIAN M,et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters,2011,2:2560-2565.
[9] XU Y,LOTFABAD E M,WANG H,et al. Nanocrystalline anatase TiO2:A new anode material for rechargeable sodium ion batteries[J]. Chemical Communications,2013,49:8973-5.
[10] KIM K-T,ALI G,CHUNG K Y,et al. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries[J]. Nano Letters,2014,14:416-422.
[11] WU L,BUCHHOLZ D,BRESSER D,et al. Anatase TiO2 nanoparticles for high power sodium-ion anodes[J]. Journal of Power Sources,2014,251:379-385.
[12] GONZALEZ J R,ZHECHEVA E,STOYANOVA R,et al. A fractal-like electrode based on double-wall nanotubes of anatase exhibiting improved electrochemical behaviour in both lithium and sodium batteries[J]. Physical Chemistry Chemical Physics,2015,17:4687-4695.
[13] HONG Z,ZHOU K,HUANG Z,et al. Iso-oriented anatase TiO2 mesocages as a high performance anode material for sodium-ion storage[J]. Scientific Reports,2015,5:11960.
[14] Li Y N,SU J,LV X Y,et al. Yeast bio-template synthesis of porous anatase TiO2 and potential application as an anode for sodium-ion batteries[J]. Electrochimica Acta,2015,182:596-603.
[15] SU D,DOU S,WANG G,Anatase TiO2:Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries[J]. Chemistry of Materials,2015,27:6022-6029.
[16] WU L,BRESSER D,BUCHHOLZ D,et al. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles[J]. Advanced Energy Materials,2015,5(2):DOI: 10.1002/aenm.201401142.
[17] YANG X,WANG C,YANG Y,et al. Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes[J]. Journal of Materials Chemistry A,2015,3:8800-8807.
[18] BI Z,PARANTHAMAN M P,MENCHHOFER P A,et al. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries[J]. Journal of Power Sources,2013,222:461-466.
[19] WANG X,FAN L,GONG D,et al. Core-shell Ge@Graphene@ TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery[J]. Advanced Functional Materials,2016,26:1104-1111.
[20] HUANG J P,YUAN D D,ZHANG H Z,et al. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries[J]. Rsc Advances,2013,3:12593-12597.
[21] WU L,BRESSER D,BUCHHOLZ D,et al. Nanocrystalline TiO2(B) as anode material for sodium-ion batteries[J]. Journal of the Electrochemical Society,2015,162:A3052-A3058.
[22] LIAO J Y,DE LUNA B,MANTHIRAM A. TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage[J]. Journal of Materials Chemistry A,2016,4:801-806.
[23] HONG Z,ZHOU K,ZHANG J,et al. Facile synthesis of rutile TiO2 mesocrystals with enhanced sodium storage properties[J]. Journal of Materials Chemistry A,2015,3:17412-17416.
[24] USUI H,YOSHIOKA S,WASADA K,et al. Nb-doped rutile TiO2:A potential anode material for Na-ion battery[J]. Acs Applied Materials & Interfaces,2015,7:6567-6573.
[25] ZHANG Y,PU X,YANG Y,et al. An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage[J]. Physical Chemistry Chemical Physics,2015,17:15764-70.
[26] PEREZ-FLORES JC,BAEHTZ C,KUHN A,et al. Hollandite-type TiO2:A new negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:1825-33.
[27] LEGRAIN F,MALYI O,MANZHOS S. Insertion energetics of lithium,sodium,and magnesium in crystalline and amorphous titanium dioxide:A comparative first-principles study[J]. Journal of Power Sources,2015,278:197-202.
[28] GE Y,ZHU J,LU Y,et al. The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites[J]. Electrochimica Acta,2015,176:989-996.
[29] YAN Z,LIU L,TAN J,et al. One-pot synthesis of bicrystalline titanium dioxide spheres with a core-shell structure as anode materials for lithium and sodium ion batteries[J]. Journal of Power Sources,2014,269:37-45.
[30] HWANG J Y,MYUNG S T,LEE J H,et al. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes[J]. Nano Energy,2015,16:218-226.
[31] YEO Y,JUNG J W,PARK K,et al. Graphene-wrapped anatase TiO2 nanofibers as high-rate and long-cycle-life anode material for sodium ion batteries[J]. Scientific Reports,2014,5:doi:10.1038/srep13862.
[32] MASSÉ RC,UCHAKER E,CAO G. Beyond Li-ion:Electrode materials for sodium- and magnesium-ion batteries[J]. SCIENCE CHINA Materials,2015,58:52.
[33] BRESSER D,OSCHMANN B,TAHIR M N,et al. Carbon-coated anatase TiO2 nanotubes for Li- and Na-ion anodes[J]. Journal of the Electrochemical Society,2015,162:A3013-A3020.
[34] JUNG K N,SEONG J Y,KIM S S,et al. One-dimensional nanofiber architecture of an anatase TiO2-carbon composite with improved sodium storage performance[J]. Rsc Advances,2015,5:106252-106257.
[35] YANG F,ZHANG Z,HAN Y,et al. TiO2/carbon hollow spheres as anode materials for advanced sodium ion batteries[J]. Electrochimica Acta,2015,178:871-876.
[36] ZHANG Y,YANG Y,HOU H,et al. Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres[J]. Journal of Materials Chemistry A,2015,3:18944-18952.
[37] CHA H A,JEONG H M,KANG J K. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries[J]. Journal of Materials Chemistry A,2014,2:5182-5186.
[38] QIN G,ZHANG X,WANG C. Design of nitrogen doped graphene grafted TiO2 hollow nanostructures with enhanced sodium storage performance[J]. Journal of Materials Chemistry A,2014,2:12449-12458.
[39] LIU H,CAO K,XU X,et al. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces,2015,7:11239-11245.
[40] XU J,YANG D Z,LIAO X Z,et al. Electrochemical performances of reduced graphene oxide/titanium dioxide composites for sodium-ion batteries[J]. Acta Physico-Chimica Sinica,2015,31:913-919.
[41] DAS S K,JACHE B,LAHON H,et al. Graphene mediated improved sodium storage in nanocrystalline anatase TiO2 for sodium ion batteries with ether electrolyte[J]. Chemical Communications,2016,52:1428-1431.
[42] FENG J M,DONG L,HAN Y,et al. Facile synthesis of graphene-titanium dioxide nanocomposites as anode materials for Na-ion batteries[J]. International Journal of Hydrogen Energy,2016,41:355-360.
[43] LAI Y,LIU W,LI J,et al. High performance sodium storage of Fe-doped mesoporous anatase TiO2/amorphous carbon composite[J]. Journal of Alloys and Compounds,2016,666:254-261.
[44] Yan D,Yu C,Bai Y,et al. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries[J]. Chemical Communications,2015,51:8261-8264
[45] YANG Y,JI X,JING M,et al. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3:5648-5655.
[46] ZHAO F,WANG B,TANG Y,et al. Niobium doped anatase TiO2 as an effective anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:22969-22974.
[47] CATTI M,PINUS I,SCHERILLO A. On the crystal energy and structure of A2TinO2n+1 (A=Li, Na, K) titanates by DFT calculations and neutron diffraction[J]. Journal of Solid State Chemistry,2013,205:64-70.
[48] SENGUTTUVAN P,ROUSSE G,SEZNEC V,et al. Na2Ti3O7:Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials,2011,23:4109-4111.
[49] WANG W,YU C,LIU Y,et al. Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries[J]. Rsc Advances,2013,3:1041-1044.
[50] WANG W,YU C,LIN Z,et al. Microspheric Na2Ti3O7 consisting of tiny nanotubes:An anode material for sodium-ion batteries with ultrafast charge-discharge rates[J]. Nanoscale,2013,5:594-599.
[51] PAN H,LU X,YU X,et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries[J]. Advanced Energy Materials,2013,3:1186-1194.
[52] NAVA-AVENDANO J,MORALES-GARCIA A,PONROUCH A,et al. Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7[J]. Journal of Materials Chemistry A,2015,3:22280-22286.
[53] RUDOLA A,SARAVANAN K,MASON C W,et al. Na2Ti3O7:An intercalation based anode for sodium-ion battery applications[J]. Journal of Materials Chemistry A,2013,1:2653-2662.
[54] XU J,MA C,BALASUBRAMANIAN M,et al. Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery[J]. Chemical Communications,2014,50:12564-12567.
[55] YAN Z,LIU L,SHU H,et al. A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries[J]. Journal of Power Sources,2015,274:8-14.
[56] WANG S,WANG W,ZHAN P,et al. 3D flower-like NaHTi3O7 nanotubes as high-performance anodes for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:16528-16534.
[57] EGUIA-BARRIO A,CASTILLO-MARTINEZ E,ZARRABEITIA M,et al. Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries[J]. Physical Chemistry Chemical Physics,2015,17:6988-6994.
[58] RUDOLA A,SARAVANAN K,DEVARAJ S,et al. Na2Ti6O13:A potential anode for grid-storage sodium-ion batteries[J]. Chemical Communications,2013,49:7451-7453.
[59] SHEN K,WAGEMAKER M. Na2+xTi6O13 as potential negative electrode material for Na-ion batteries[J]. Inorganic Chemistry,2014,53:8250-8256.
[60] Li H,Fei H,Liu X,et al. In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries[J]. Chemical Communications,2015,51:9298-9300.
[61] KATAOKA K,AKIMOTO J. Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure[J]. Journal of Power Sources,2016,305:151-155.
[62] LIAO J-Y,MANTHIRAM A. High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage[J]. Nano Energy,2015,18:20-27.
[63] Wu W,Shabhag S,Chang J,et al.Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries[J]. Journal of The Electrochemical Society,2015,162:A803-A805.
[64] HOU Z,LI X,LIANG J,et al. An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage[J]. Journal of Materials Chemistry A,2015,3:1400-1404.
[65] WU X,CAO Y,AI X,et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry[J]. Electrochemistry Communications,2013,31:145-148.
[66] DELMAS C,CHERKAOUI F,NADIRI A,et al. A NASICON-type phase as intercalation electrode-NaTi2(PO4)3[J]. Materials Research Bulletin,1987,22:631-639.
[67] DELMAS C,NADIRI A,SOUBEYROUX J L. The NASICON-type titanium phosphates LiTi2(PO4)3, NaTi2(PO4)3 as electrode materials[J]. Solid State Ionics,1988,28:419-423.
[68] LIGHTFOOT P,WOODCOCK D A,JORGENSEN J D,et al. Low thermal expansion materials:A comparison of the structural behaviour of La0.33Ti2(PO4)3,Sr0.5Ti2(PO4)3 and NaTi2(PO4)3[J]. International Journal of Inorganic Materials,1999,1:53-60.
[69] WOODCOCK DA,LIGHTFOOT P. Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M=Li, Na, K)[J]. Journal of Materials Chemistry,1999,9:2907-2911.
[70] GULER H,KURTULUS F. A rapid synthesis of sodium titanium phosphate, NaTi2(PO4)3 by using microwave energy[J]. Materials Chemistry and Physics,2006,99:394-397.
[71] LI X,ZHU X,LIANG J,et al. Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries[J]. Journal of the Electrochemical Society,2014,161:A1181-A1187.
[72] WU C,KOPOLD P,DING Y L,et al. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes[J]. ACS Nano,2015,9:6610-6618.
[73] JIANG Y,ZENG L,WANG J,et al. A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance:NaTi2(PO4)3 as an example[J]. Nanoscale,2015,7:14723-14729.
[74] WU X Y,SUN M Y,SHEN Y F,et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry[J]. Chemsuschem,2014,7:407-411.
[75] PANG G,YUAN C,NIE P,et al. Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries[J]. Nanoscale,2014,6:6328-6334.
[76] PANG G,NIE P,YUAN C,et al. Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs-Na0.44MnO2 system[J]. Energy Technology,2014,2:705-712.
[77] PANG G,NIE P,YUAN C,et al. Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries[J]. Journal of Materials Chemistry A,2014,2:20659-20666.
[78] Yang J,Wang H ,Hu P,et al.A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2[J]. Small,2015,11:3744-3749.
[79] YANG G,SONG H,WU M,et al. Porous NaTi2(PO4)3 nanocubes:A high-rate nonaqueous sodium anode material with more than 10000 cycle life[J]. Journal of Materials Chemistry A,2015,3:18718-18726.
[80] PARK S I,GOCHEVA I,OKADA S,et al. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries[J]. Journal of the Electrochemical Society, 2011,158(10):A1067-A1070.
[81] MOHAMED AI,SANSONE NJ,KUEI B,et al. Using polypyrrole coating to improve cycling stability of NaTi2(PO4)3 as an aqueous Na-ion anode[J]. Journal of the Electrochemical Society,2015,162:A2201-A2207.
[82] WU W,YAN J,WISE A,et al. Using intimate carbon to enhance the Performance of NaTi2(PO4)3 anode materials:Carbon nanotubes vs graphite[J]. Journal of the Electrochemical Society,2014,161:A561-A567.
[83] WU W,MOHAMED A,WHITACRE J F. Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode[J]. Journal of the Electrochemical Society,2013,160:A497-A504.
,,,,,:
[1] PASCAL G E,FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28:1172-1175. [2] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958. [3] HONG K L,QIE L,ZENG R,et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A,2014,2:12733-12738. [4] LI Y,XU S,WU X,et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:71-77. [5] WANG H G,WU Z,MENG F L,et al. Nitrogen-doped porous carbon nanosheets as low-cost,high-performance anode material for sodium-ion batteries[J]. Chemsuschem,2013,6(1):56-60. [6] LUO W,SCHARDT J,BOMMIER C,et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A,2013,1:10662-10666. [7] TANG K,FU L,WHITE R J,et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials,2012,2:873-877. [8] XIONG H,SLATER MD,BALASUBRAMANIAN M,et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters,2011,2:2560-2565. [9] XU Y,LOTFABAD E M,WANG H,et al. Nanocrystalline anatase TiO2:A new anode material for rechargeable sodium ion batteries[J]. Chemical Communications,2013,49:8973-5. [10] KIM K-T,ALI G,CHUNG K Y,et al. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries[J]. Nano Letters,2014,14:416-422. [11] WU L,BUCHHOLZ D,BRESSER D,et al. Anatase TiO2 nanoparticles for high power sodium-ion anodes[J]. Journal of Power Sources,2014,251:379-385. [12] GONZALEZ J R,ZHECHEVA E,STOYANOVA R,et al. A fractal-like electrode based on double-wall nanotubes of anatase exhibiting improved electrochemical behaviour in both lithium and sodium batteries[J]. Physical Chemistry Chemical Physics,2015,17:4687-4695. [13] HONG Z,ZHOU K,HUANG Z,et al. Iso-oriented anatase TiO2 mesocages as a high performance anode material for sodium-ion storage[J]. Scientific Reports,2015,5:11960. [14] Li Y N,SU J,LV X Y,et al. Yeast bio-template synthesis of porous anatase TiO2 and potential application as an anode for sodium-ion batteries[J]. Electrochimica Acta,2015,182:596-603. [15] SU D,DOU S,WANG G,Anatase TiO2:Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries[J]. Chemistry of Materials,2015,27:6022-6029. [16] WU L,BRESSER D,BUCHHOLZ D,et al. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles[J]. Advanced Energy Materials,2015,5(2):DOI: 10.1002/aenm.201401142. [17] YANG X,WANG C,YANG Y,et al. Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes[J]. Journal of Materials Chemistry A,2015,3:8800-8807. [18] BI Z,PARANTHAMAN M P,MENCHHOFER P A,et al. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries[J]. Journal of Power Sources,2013,222:461-466. [19] WANG X,FAN L,GONG D,et al. Core-shell Ge@Graphene@ TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery[J]. Advanced Functional Materials,2016,26:1104-1111. [20] HUANG J P,YUAN D D,ZHANG H Z,et al. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries[J]. Rsc Advances,2013,3:12593-12597. [21] WU L,BRESSER D,BUCHHOLZ D,et al. Nanocrystalline TiO2(B) as anode material for sodium-ion batteries[J]. Journal of the Electrochemical Society,2015,162:A3052-A3058. [22] LIAO J Y,DE LUNA B,MANTHIRAM A. TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage[J]. Journal of Materials Chemistry A,2016,4:801-806. [23] HONG Z,ZHOU K,ZHANG J,et al. Facile synthesis of rutile TiO2 mesocrystals with enhanced sodium storage properties[J]. Journal of Materials Chemistry A,2015,3:17412-17416. [24] USUI H,YOSHIOKA S,WASADA K,et al. Nb-doped rutile TiO2:A potential anode material for Na-ion battery[J]. Acs Applied Materials & Interfaces,2015,7:6567-6573. [25] ZHANG Y,PU X,YANG Y,et al. An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage[J]. Physical Chemistry Chemical Physics,2015,17:15764-70. [26] PEREZ-FLORES JC,BAEHTZ C,KUHN A,et al. Hollandite-type TiO2:A new negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:1825-33. [27] LEGRAIN F,MALYI O,MANZHOS S. Insertion energetics of lithium,sodium,and magnesium in crystalline and amorphous titanium dioxide:A comparative first-principles study[J]. Journal of Power Sources,2015,278:197-202. [28] GE Y,ZHU J,LU Y,et al. The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites[J]. Electrochimica Acta,2015,176:989-996. [29] YAN Z,LIU L,TAN J,et al. One-pot synthesis of bicrystalline titanium dioxide spheres with a core-shell structure as anode materials for lithium and sodium ion batteries[J]. Journal of Power Sources,2014,269:37-45. [30] HWANG J Y,MYUNG S T,LEE J H,et al. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes[J]. Nano Energy,2015,16:218-226. [31] YEO Y,JUNG J W,PARK K,et al. Graphene-wrapped anatase TiO2 nanofibers as high-rate and long-cycle-life anode material for sodium ion batteries[J]. Scientific Reports,2014,5:doi:10.1038/srep13862. [32] MASSÉ RC,UCHAKER E, [33] BRESSER D,OSCHMANN B,TAHIR M N,et al. Carbon-coated anatase TiO2 nanotubes for Li- and Na-ion anodes[J]. Journal of the Electrochemical Society,2015,162:A3013-A3020. [34] JUNG K N,SEONG J Y,KIM S S,et al. One-dimensional nanofiber architecture of an anatase TiO2-carbon composite with improved sodium storage performance[J]. Rsc Advances,2015,5:106252-106257. [35] YANG F,ZHANG Z,HAN Y,et al. TiO2/carbon hollow spheres as anode materials for advanced sodium ion batteries[J]. Electrochimica Acta,2015,178:871-876. [36] ZHANG Y,YANG Y,HOU H,et al. Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres[J]. Journal of Materials Chemistry A,2015,3:18944-18952. [37] CHA H A,JEONG H M,KANG J K. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries[J]. Journal of Materials Chemistry A,2014,2:5182-5186. [38] QIN G,ZHANG X,WANG C. Design of nitrogen doped graphene grafted TiO2 hollow nanostructures with enhanced sodium storage performance[J]. Journal of Materials Chemistry A,2014,2:12449-12458. [39] LIU H, [40] XU J,YANG D Z,LIAO X Z,et al. Electrochemical performances of reduced graphene oxide/titanium dioxide composites for sodium-ion batteries[J]. Acta Physico-Chimica Sinica,2015,31:913-919. [41] DAS S K,JACHE B,LAHON H,et al. Graphene mediated improved sodium storage in nanocrystalline anatase TiO2 for sodium ion batteries with ether electrolyte[J]. Chemical Communications,2016,52:1428-1431. [42] FENG J M,DONG L,HAN Y,et al. Facile synthesis of graphene-titanium dioxide nanocomposites as anode materials for Na-ion batteries[J]. International Journal of Hydrogen Energy,2016,41:355-360. [43] LAI Y,LIU W,LI J,et al. High performance sodium storage of Fe-doped mesoporous anatase TiO2/amorphous carbon composite[J]. Journal of Alloys and Compounds,2016,666:254-261. [44] Yan D,Yu C,Bai Y,et al. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries[J]. Chemical Communications,2015,51:8261-8264 [45] YANG Y,JI X,JING M,et al. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3:5648-5655. [46] ZHAO F,WANG B,TANG Y,et al. Niobium doped anatase TiO2 as an effective anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:22969-22974. [47] CATTI M,PINUS I,SCHERILLO A. On the crystal energy and structure of A2TinO2n+1 (A=Li, Na, K) titanates by DFT calculations and neutron diffraction[J]. Journal of Solid State Chemistry,2013,205:64-70. [48] SENGUTTUVAN P,ROUSSE G,SEZNEC V,et al. Na2Ti3O7:Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials,2011,23:4109-4111. [49] WANG W,YU C,LIU Y,et al. Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries[J]. Rsc Advances,2013,3:1041-1044. [50] WANG W,YU C,LIN Z,et al. Microspheric Na2Ti3O7 consisting of tiny nanotubes:An anode material for sodium-ion batteries with ultrafast charge-discharge rates[J]. Nanoscale,2013,5:594-599. [51] PAN H,LU X,YU X,et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries[J]. Advanced Energy Materials,2013,3:1186-1194. [52] NAVA-AVENDANO J,MORALES-GARCIA A,PONROUCH A,et al. Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7[J]. Journal of Materials Chemistry A,2015,3:22280-22286. [53] RUDOLA A,SARAVANAN K,MASON C W,et al. Na2Ti3O7:An intercalation based anode for sodium-ion battery applications[J]. Journal of Materials Chemistry A,2013,1:2653-2662. [54] XU J,MA C,BALASUBRAMANIAN M,et al. Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery[J]. Chemical Communications,2014,50:12564-12567. [55] YAN Z,LIU L,SHU H,et al. A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries[J]. Journal of Power Sources,2015,274:8-14. [56] WANG S,WANG W,ZHAN P,et al. 3D flower-like NaHTi3O7 nanotubes as high-performance anodes for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:16528-16534. [57] EGUIA-BARRIO A,CASTILLO-MARTINEZ E,ZARRABEITIA M,et al. Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries[J]. Physical Chemistry Chemical Physics,2015,17:6988-6994. [58] RUDOLA A,SARAVANAN K,DEVARAJ S,et al. Na2Ti6O13:A potential anode for grid-storage sodium-ion batteries[J]. Chemical Communications,2013,49:7451-7453. [59] SHEN K,WAGEMAKER M. Na2+xTi6O13 as potential negative electrode material for Na-ion batteries[J]. Inorganic Chemistry,2014,53:8250-8256. [60] Li H,Fei H,Liu X,et al. In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries[J]. Chemical Communications,2015,51:9298-9300. [61] KATAOKA K,AKIMOTO J. Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure[J]. Journal of Power Sources,2016,305:151-155. [62] LIAO J-Y,MANTHIRAM A. High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage[J]. Nano Energy,2015,18:20-27. [63] Wu W,Shabhag S,Chang J,et al. Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries[J]. Journal of The Electrochemical Society,2015,162:A803-A805. [64] HOU Z,LI X,LIANG J,et al. An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage[J]. Journal of Materials Chemistry A,2015,3:1400-1404. [65] WU X, [66] DELMAS C,CHERKAOUI F,NADIRI A,et al. A NASICON-type phase as intercalation electrode-NaTi2(PO4)3[J]. Materials Research Bulletin,1987,22:631-639. [67] DELMAS C,NADIRI A,SOUBEYROUX J L. The NASICON-type titanium phosphates LiTi2(PO4)3, NaTi2(PO4)3 as electrode materials[J]. Solid State Ionics,1988,28:419-423. [68] LIGHTFOOT P,WOODCOCK D A,JORGENSEN J D,et al. Low thermal expansion materials:A comparison of the structural behaviour of La0.33Ti2(PO4)3,Sr0.5Ti2(PO4)3 and NaTi2(PO4)3[J]. International Journal of Inorganic Materials,1999,1:53-60. [69] WOODCOCK DA,LIGHTFOOT P. Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M=Li, Na, K)[J]. Journal of Materials Chemistry,1999,9:2907-2911. [70] GULER H,KURTULUS F. A rapid synthesis of sodium titanium phosphate, NaTi2(PO4)3 by using microwave energy[J]. Materials Chemistry and Physics,2006,99:394-397. [71] LI X,ZHU X,LIANG J,et al. Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries[J]. Journal of the Electrochemical Society,2014,161:A1181-A1187. [72] WU C,KOPOLD P,DING Y L,et al. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes[J]. ACS Nano,2015,9:6610-6618. [73] JIANG Y,ZENG L,WANG J,et al. A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance:NaTi2(PO4)3 as an example[J]. Nanoscale,2015,7:14723-14729. [74] WU X Y,SUN M Y,SHEN Y F,et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry[J]. Chemsuschem,2014,7:407-411. [75] PANG G,YUAN C,NIE P,et al. Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries[J]. Nanoscale,2014,6:6328-6334. [76] PANG G,NIE P,YUAN C,et al. Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs-Na0.44MnO2 system[J]. Energy Technology,2014,2:705-712. [77] PANG G,NIE P,YUAN C,et al. Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries[J]. Journal of Materials Chemistry A,2014,2:20659-20666. [78] Yang J,Wang H ,Hu P,et al. A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2[J]. Small,2015,11:3744-3749. [79] YANG G,SONG H,WU M,et al. Porous NaTi2(PO4)3 nanocubes:A high-rate nonaqueous sodium anode material with more than 10000 cycle life[J]. Journal of Materials Chemistry A,2015,3:18718-18726. [80] PARK S I,GOCHEVA I,OKADA S,et al. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries[J]. Journal of the Electrochemical Society, 2011,158(10):A1067-A1070. [81] MOHAMED AI,SANSONE NJ,KUEI B,et al. Using polypyrrole coating to improve cycling stability of NaTi2(PO4)3 as an aqueous Na-ion anode[J]. Journal of the Electrochemical Society,2015,162:A2201-A2207. [82] WU W,YAN J,WISE A,et al. Using intimate carbon to enhance the Performance of NaTi2(PO4)3 anode materials:Carbon nanotubes vs graphite[J]. Journal of the Electrochemical Society,2014,161:A561-A567. [83] WU W,MOHAMED A,WHITACRE J F. Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode[J]. Journal of the Electrochemical Society,2013,160:A497-A504. [84] DIFI S,SAADOUNE I,SOUGRATI M T,et al. Mechanisms and performances of Na1.5Fe0.5Ti1.5(PO4)3/C composite as electrode material for Na-ion batteries[J]. Journal of Physical Chemistry C,2015,119:25220-25234. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[3] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[4] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[5] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[6] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[7] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[8] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[9] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[10] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
[11] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[12] | 赵志强, 刘恒均, 徐熙祥, 潘圆圆, 李庆浩, 李洪森, 胡涵, 李强. 储能科学中的磁性表征技术[J]. 储能科学与技术, 2022, 11(3): 818-833. |
[13] | 田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312. |
[14] | 李鹏辉, 吴彩文, 任建鹏, 吴文娟. 木质素作为锂离子电池电极材料的研究进展[J]. 储能科学与技术, 2022, 11(1): 66-77. |
[15] | 孙德旺, 蒋必志, 袁涛, 郑时有. 钛铌氧化物用于锂离子电池负极的研究进展[J]. 储能科学与技术, 2021, 10(6): 2127-2143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||