[1] Winter M,Brodd R J. What are batteries,fuel cells and superca- pacitors?[J]. Chem. Rev. ,2004,104(10):4245-4270. [2] Miller J R,Simon P. Electrochemical capacitors for energy management[J]. Science ,2008,321(5889):651-652. [3] Conway B E. Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications[M]. New York:Plenum Press,1999. [4] Service R F. New supercapacitor promises to pack more electrical punch[J]. Science ,2006,313(5789):902. [5] Simon P,Gogotsi Y. Materials for electrochemical capacitors[J]. Nat. Mater. ,2008,7:845-854. [6] Largeot C,Portet C,Chmiola J, et al . Relation between the ion size and pore size for an electric double-layer capacitor[J]. J. Am. Chem. Soc. ,2008,130(9):2730-2731. [7] Vivekchand S R C,Rout C S,Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors[J]. J. Chem. Sci. ,2008,120(1):9-13. [8] Stoller M D,Park S J,Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Lett. ,2008,8(10):3498-3502. [9] Zhang L L,Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev. ,2009,38:2520-2531. [10] Wei W,Cui X,Chen W, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chem. Soc. Rev. ,2011,40:1697-1721. [11] Wang Y,Xia Y. Recent progress in supercapacitors:From materials design to system construction[J]. Adv. Mater. ,2013,25(37):5336-5342. [12] Lee C,Wei X D,Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science ,2008,321(5887):385-388. [13] Novoselov K S,Geim A K,Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science ,2004,306(5696):666-669. [14] Balandin A A,Ghosh S,Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett. ,2008,8(3):902-907. [15] Zhang K,Mao L,Zhang L L, et al. Surfactant-intercalated,chemically reduced graphene oxide for high performance supercapacitor electrodes[J]. J. Mater. Chem. ,2011,21(20):7302-7307. [16] Yoon Y,Lee K,Baik C, et al. Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors[J]. Adv. Mater. ,2013,25(32):4437-4444. [17] Wang G,Sun X,Lu F, et al. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors[J]. Small ,2012,8(3):452-459. [18] Hantel M M,Kaspar T,Nesper R, et al . Partially reduced graphite oxide as an electrode material for electrochemical double-layer capacitors[J]. Chem. Eur. J. ,2012,18(29):9125-9136. [19] Yang X,Qiu L,Cheng C, et al . Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films[J]. Angew. Chem. Int. Ed. ,2011,50(32):7325-7328. [20] Yang X,Cheng C,Wang Y, et al . Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science ,2013,341(6145):534-537. [21] Wang Z L,Xu D,Wang H G, et al . In situ fabrication of porous graphene electrodes for high-performance energy storage[J]. ACS Nano ,2013,7(3):2422-2430. [22] Luan V H,Tien H N,Hoa L T, et al . Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor[J]. J. Mater. Chem. A ,2013,1(2):208-211. [23] Cranford S,Buehler M. Packing efficiency and accessible surface area of crumpled graphene[J]. Phys. Rev. B ,2011,84(20):205451. [24] Khanra P,Kuila T,Bae S H, et al . Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application[J]. J. Mater. Chem. ,2012,22(46):24403-24410. [25] Ghosh S,An X,Shah R, et al . Effect of 1-pyrene carboxylic-acid functionalization of graphene on its capacitive energy storage[J]. J. Phys. Chem. C ,2012,116(39):20688-20693. [26] Ai W,Zhou W,Du Z, et al . Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes[J]. J. Mater. Chem. ,2012,22(44):23439-23446. [27] Gopalakrishnan K,Govindaraj A,Rao C N R. Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis[J]. J. Mater. Chem. A ,2013,1(26):7563-7565. [28] Qian T,Yu C,Wu S, et al . A facilely prepared polypyrrole-reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes[J]. J. Mater. Chem. A ,2013,1(22):6539-6542 [29] Liu J,An J,Ma Y, et al . Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode[J]. J. Electrochem. Soc. ,2012,159(6):828-833. [30] Mao L,Zhang K,Chan H S O, et al . Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode[J]. J. Mater. Chem. ,2012,22(1):80-85. [31] Mao L,Chan H S O,Wu J. Cetyltrimethylammonium bromide intercalated graphene/polypyrrole nanowire composites for high performance supercapacitor electrode[J]. RSC Advances ,2012,2(28):10610-10617. [32] Cong H P,Ren X C,Wang P, et al . Flexible graphene-polyaniline composite paper for high-performance supercapacitor[J]. Energy & Environmental Science ,2013,6(4):1185-1191. [33] Lai L,Yang H,Wang L, et al . Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS Nano ,2012,6(7):5941-5951. [34] Jaide V,Ramaprabhu S. Poly( p -phenylenediamine)/graphene nanocomposites for supercapacitor applications[J]. J. Mater. Chem. ,2012,22(36):18775-18783. [35] Liu Y,Deng R,Wang Z, et al . Carboxyl-functionalized graphene oxide-polyaniline composite as a promising supercapacitor material[J]. J. Mater. Chem. ,2012,22(27):13619-13624. [36] Xiang C,Li M,Zhi M, et al . Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes:Shape and coupling effects[J]. J. Mater. Chem. ,2012,22(36):19161-19167. [37] Lee M T,Fan C Y,Wang Y C, et al . Improved supercapacitor performance of MnO 2 -graphene composites constructed using a supercritical fluid and wrapped with an ionic liquid[J]. J. Mater. Chem. A ,2013,1(10):3395-3405. [38] Li Y,Zhao N,Shi C, et al . Improve the supercapacity performance of MnO 2 -decorated graphene by controlling the oxidization extent of graphene[J]. J. Phys. Chem. C ,2012,116(48):25226-25232. [39] Li Z,Mi Y,Liu X, et al . Flexible graphene/MnO 2 composite papers for supercapacitor electrodes[J]. J. Mater. Chem. ,2011,21(38):14706-14711. [40] Liu W W,Feng Y Q,Yan X B, et al . Superior micro-supercapacitors based on graphene quantum dots[J]. Adv. Funct. Mater. ,2013,23(33):4111-4122. [41] Yan J,Fan Z,Sun W, et al . Advanced asymmetric supercapacitors based on Ni(OH) 2 /graphene and porous graphene electrodes with high energy density[J]. Adv. Funct. Mater. ,2012,22(12): 2632-2641. [42] Zhang J,Jiang J,Li H, et al . A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes[J]. Energy & Environmental Science ,2011,4(10):4009-4015. [43] Fan Z,Yan J,Wei T, et al . Asymmetric supercapacitors based on graphene/MnO 2 and activated carbon nanofiber electrodes with high power and energy density[J]. Adv. Funct. Mater. ,2011,21(12):2366-2375. [44] Wang W,Hao Q,Lei W, et al . Graphene/SnO 2 /polypyrrole ternary nanocomposites as supercapacitor electrode materials[J]. RSC Advances ,2012,2(27):10268-10274. [45] Andrew B. R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochim. Acta ,2007,53:1083-1091. |