储能科学与技术 ›› 2014, Vol. 3 ›› Issue (1): 21-29.doi: 10.3969/j.issn.2095-4239.2014.01.003
王昊, 闫勇, 徐凯琪, 林明翔, 唐代春, 董金平, 孙洋, 陈彬, 贲留斌, 黄学杰
收稿日期:
2013-12-16
出版日期:
2014-01-01
发布日期:
2014-01-01
通讯作者:
黄学杰,研究员,E-mail:xjhuang@iphy.ac.cn.
作者简介:
第一作者:王昊(1990--),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:wanghaoe_mail@163.com;
WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, Dong Jinping, SUN Yang, CHEN Bin, BEN Liubin, HUANG Xueji
Received:
2013-12-16
Online:
2014-01-01
Published:
2014-01-01
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2013年10月1日至2013年11月30日上线的锂电池研究论文,共有628篇,因从上月起Web of Science不提供按文章上线时间的查询功能,本期搜索可能遗漏偏多,因此文章总篇数偏少,我们仅选择其中75篇加以评论.层状氧化物正极材料的研究包括充放电循环过程中的结构衍变以及表面改性研究,高电压尖晶石结构LiNi0.5M1.5O4材料的研究偏重于掺杂和表面改性,尖晶石LiMn2O4的工作包括改变前驱体和优化合成条件的研究,聚阴离子正极材料的研究偏重于高电压材料,负极研究以硅基负极材料为主,还包括钛酸锂,硬碳材料和合金化负极等.电解质的研究包括聚合物固体电解质,无机固体电解质以及锂盐特性分析.锂空气电池研究论文有多篇,电池分析方面包括热模型,寿命模型和阻抗分析等.理论计算包括力学分析,扩散过程和界面分析等.
中图分类号:
王昊, 闫勇, 徐凯琪, 林明翔, 唐代春, 董金平, 孙洋, 陈彬, 贲留斌, 黄学杰. 锂电池热点论文点评(2013.10.1--2013.11.30)[J]. 储能科学与技术, 2014, 3(1): 21-29.
WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, Dong Jinping, SUN Yang, CHEN Bin, BEN Liubin, HUANG Xueji. Reviews of selected recent papers for lithium batteries (Oct. 1,2013 to Nov. 30,2013)[J]. Energy Storage Science and Technology, 2014, 3(1): 21-29.
[1] Liu H D,Fell C R,An K, et al . In-situ neutron diffraction study of the x Li 2 MnO 3 ·(1- x )LiMO 2 ( x =0,0.5;M = Ni,Mn,Co)layered oxide compounds during electrochemical cycling[J] . Journal of Power Sources ,2013,240:772-778. [2] Maugeri L,Iadecolaa A,Simonelli L, et al . Study of local disorder in LiMn (Cr,Ni) O 2 compounds by extended X-ray absorption fine structure measurements[J] . Journal of Power Sources ,2013,242:202-207. [3] Mohanty D,Huq A,Payzant E A, et al . Neutron diffraction and magnetic susceptibility studies on a high-voltage Li 1.2 Mn 0.55 Ni 0.15 Co 0.10 O 2 lithium ion battery cathode:Insight into the crystal structure[J]. Chemistry of Materials ,2013,25(20):4064-4070. [4] Kim G Y,Park Y J. Enhanced electrochemical and thermal properties of Sm 2 O 3 coated Li (Li 1/6 Mn 1/2 Ni 1/6 Co 1/6 ) O 2 for Li-ion batteries[J]. Journal of Electroceramics ,2013,31(1-2):199-203. [5] Xiong X H,WangZ X,Yin X, et al . A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials[J] . Materials Letters ,2013,110:4-9. [6] Kim M H,Kang Y C,Jeong S M, et al . Morphologies and electrochemical properties of 0.6Li 2 MnO 3 ·0.4LiCoO 2 composite cathode powders prepared by spray pyrolysis[J] . Materials Chemistry and Physics ,2013,142(1):438-444. [7] Cheng F Q,Xin Y L,Huang Y Y, et al . Enhanced electrochemical performances of 5V spinel LiMn 1.58 Ni 0.42 O 4 cathode materials by coating with LiAlO 2 [J] . Journal of Power Sources ,2013,239:181-188. [8] Zhu W,Liu D,Trottier J, et al . In-situ X-ray diffraction study of the phase evolution in undoped and Cr-doped Li x Mn 1.5 Ni 0.5 O 4 (0.1≤ x ≤1.0)5 V cathode materials[J] . Journal of Power Sources ,2013,242:236-243. [9] Xiao J,Yu X,Zheng J, et al . Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries[J] . Journal of Power Sources ,2013,242:736-741. [10] Guo D L,Chang Z R,Li B, et al. Synthesis of high-purity LiMn 2 O 4 with enhanced electrical properties from electrolytic manganese dioxide treated by sulfuric acid-assisted hydrothermal method[J] . Journal of Solid State Electrochemistry ,2013,17(11):2849-2856. [11] Jiang J B,Du K,Cao Y B, et al . Syntheses of spherical LiMn 2 O 4 with Mn 3 O 4 and its electrochemistry performance[J] . Journal of Alloys and Compounds ,2013,577:138-142. [12] Zhao S,BaiY,Ding L H, et al . Enhanced cycling stability and thermal stability of YPO 4 -coated LiMn 2 O 4 cathode materials for lithium ion batteries[J] . Solid State Ionics ,2013,247:22-29. [13] Ni J F,Liu W,Liu J Z, et al . Investigation on a 3.2V LiCoPO 4 /Li 4 Ti 5 O 12 full battery[J] . Electrochemistry Communications ,2013,35:1-4. [14] Gutierrez A,Benedek N A,Manthiram A. Crystal-chemical guide for understanding redox energy variations of M 2+/3+ couples in polyanion cathodes for lithium-ion batteries[J] . Chemistry of Materials ,2013,25(20):4010-4016. [15] Lopez M C,Ortiz G F,Lavela P, et al . Tunable Ti 4+ /Ti 3+ redox potential in the presence of iron and calcium in NASICON-type related phosphates as electrodes for lithium batteries[J] . Chemistry of Materials ,2013,25(20):4025-4035. [16] Fan C L,HanS C,Li L F, et al . Structure and electrochemical performances of LiFe 1-2 x Ti x PO 4 /C cathode doped with high valence Ti 4+ by carbothermal reduction method[J] . Journal of Alloys and Compounds ,2013,576:18-23. [17] Zeilinger M,Baran V,Van W L, et al . Stabilizing the phase Li 15 Si 4 through lithium-aluminum substitution in Li 15- x Al x Si 4 (0.4< x <0.8)single crystal X-ray structure determination of Li 15 Si 4 and Li 14.37 Al 0.63 Si 4 [J] . Chemistry of Materials ,2013,25(20):4113-4121. [18] Becker C R,Strawhecker K E,Mcallister Q P, et al . In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries[J] . Acs Nano ,2013,7(10):9173-9182. [19] Cattaneo A S,Dupke S,Schmitz A, et al. Solid state NMR structural studies of the lithiation of nano-silicon:Effects of charging capacities, host-doping, and thermal treatment[J]. Solid State Ionics ,2013,249:41-48. [20] Lee J K,Kim B K,Yoon W Y. Irreversible behaviors and kinetics of lithiated products in SiO x anodes with inserting Li contents in Li ion batteries[J]. Japanese Journal of Applied Physics ,2013,52(10),doi:10.7567/jjap.52.10mb10. [21] Li J C,Xiao X C,Cheng Y T, et al . Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries[J]. Journal of Physical Chemistry Letters ,2013,4(20):3387-3391. [22] Stournara M E,Xiao X C,Qi Y, et al . Li segregation induces structure and strength cChanges at the amorphous Si/Cu interface[J] . Nano Letters ,2013,13(10):4759-4768. [23] Wang Y H,Liu Y P,Zheng J Y, et al . Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries[J] . Nanotechnology ,2013,24(42):doi:10.1088/0957 -4484/24/42/424011. [24] Wong D P,Tseng H P,Chen Y T, et al . A stable silicon/graphene composite using solvent exchange method as anode material for lithium ion batteries[J] . Carbon ,2013,63:397-403. [25] Choi Z,Kramer D,Monig R. Correlation of stress and structural evolution in Li 4 Ti 5 O 12 -based electrodes for lithium ion batteries[J] . Journal of Power Sources ,2013,240:245-251. [26] Fan X Y,Shi Y X,Wang J J, et al . Electrochemical synthesis and lithium storage properties of three-dimensional porous Sn-Co alloy/CNT composite[J] . Ionics ,2013,19(11):1551-1558. [27] Hori H,Shikano M,Kobayashi H, et al . Analysis of hard carbon for lithium-ion batteries by hard X-ray photoelectron spectroscopy[J] . Journal of Power Sources ,2013,242:844-847. [28] Hwang Y H,Bae E G,Sohn K S, et al . SnO 2 nanoparticles confined in a graphene framework for advanced anode materials[J] . Journal of Power Sources ,2013,240:683-690. [29] Liu H D,Huang J M,Xiang C J, et al . In situ synthesis of SnO 2 nanosheet/graphene composite as anode materials for lithium-ion batteries[J] . Journal of Materials Science : Materials in Electronics ,2013,24(10):3640-3645. [30] Wang D N,Yang J L,Li X F, et al . Layer by layer assembly of sandwiched graphene/SnO 2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties[J] . Energy & Environmental Science ,2013,6(10):2900-2906. [31] Zhang Z L,Wang Y H,Li D, et al. Mesoporous Mn 0.5 Co 0.5 Fe 2 O 4 nanospheres grown on graphene for enhanced lithium storage properties[J] . Industrial & Engineering Chemistry Research ,2013,52(42):14906-14912. [32] Momma T,Jeong M,Yokoshima T, et al . Sn-O-C composite anode for Li secondary battery synthesized by an electrodeposition technique using organic carbonate electrolyte[J] . Journal of Power Sources ,2013,242:527-532. [33] Noh K W,Dillon S J. Morphological changes in and around Sn electrodes during Li ion cycling characterized by in situ environmental TEM[J] . Scripta Materialia ,2013,69(9):658-661. [34] Yun Y S,Jin H J. Electrochemical performance of heteroatom- enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries[J] . Materials Letters ,2013,108:311-315. [35] He Y B,Liu M,Huang Z D, et al . Effect of solid electrolyte interface(SEI)film on cyclic performance of Li 4 Ti 5 O 12 anodes for Li ion batteries[J] . Journal of Power Sources ,2013,239:269-276. [36] Jang J Y,Park G,Lee S M, et al . Functional electrolytes enhancing electrochemical performance of Sn-Fe-P alloy as anode for lithium-ion batteries[J] . Electrochemistry Communications ,2013,35:72-75. [37] Liu Y,Liu X H,Nguyen B M, et al . Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale[J] . Nano Letters ,2013,13 (10):4876-4883. [38] Chiappone A,Jeremias S,Bongiovanni R, et al. NMR study of photo-crosslinked solid polymer electrolytes:The influence of monofunctional oligoethers[J] . Journal of Polymer Science Part B : Polymer Physics ,2013,51(21):1571-1580. [39] Chiappone A,Nair J R,Gerbaldi C, et al . Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible,safe and sustainable lithium-based batteries[J] . Cellulose ,2013,20(5):2439-2449. [40] Amiki Y,Sagane F,Yamamoto K, et al . Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet[J] . Journal of Power Sources ,2013,241:583-588. [41] Hartmann P,Leichtweiss T,Busche M R, et al . Degradation of NASICON-type materials in contact with lithium metal:Formation of mixed conducting interphases(MCI)on solid electrolytes[J] . Journal of Physical Chemistry C ,2013,117(41):21064-21074. [42] Morimoto H,Awano H,Terashima J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li 1+ x Al x Ti 2- x (PO 4 ) 3 ( x =0.3)obtained by using the mechanochemical method and its application as surface modification materials of LiCoO 2 cathode for lithium cell[J] . Journal of Power Sources ,2013,240:636-643. [43] Li Z D,Zhang Y C,Xiang H F, et al . Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J] . Journal of Power Sources ,2013,240:471-475. [44] Cui X L,Zhang H M,Li S Y, et al . Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and gamma-butyrolactone[J] . Journal of Power Sources ,2013,240:476-485. [45] Hu L B,Zhang Z C,Amine K. Fluorinated electrolytes for Li-ion battery:An FEC-based electrolyte for high voltage LiNi 0.5 Mn 1.5 O 4 / graphite couple[J] . Electrochemistry Communications ,2013,35:76-79. [46] Schmuelling G,Placke T,Kloepsch R, et al. X-ray diffraction studies of the electrochemical intercalation of bis (trifluoromethanesulfonyl) imide anions into graphite for dual-ion cells[J] . Journal of Power Sources ,2013,239:563-571. [47] Sedlarikova M,Vondrak J,Musil M, et al . Explosivity of lithium perchlorate in gel polymer electrolytes[J] . Polymer Composites ,2013,34(11):1970-1974. [48] Akita Y,Segawa M,Munakata H, et al . In-situ Fourier transform infrared spectroscopic analysis on dynamic behavior of electrolyte solution on LiFePO 4 cathode[J] . Journal of Power Sources ,2013,239:175-180. [49] Itkis D M,Semenenko D A,Kataev E Y, et al . Reactivity of carbon in lithium-oxygen battery positive electrodes[J] . Nano Letters ,2013,13(10):4697-4701. [50] Luntz A C,Viswanathan V,Voss J, et al . Tunneling and polaron charge transport through Li 2 O 2 in LiO 2 batteries[J] . Journal of Physical Chemistry Letters ,2013,4(20):3494-3499. [51] Kim D S,Park Y J. Ketjen black/Co 3 O 4 nanocomposite prepared using polydopamine pre-coating layer as a reaction agent:Effective catalyst for air electrodes of Li/air batteries[J] . Journal of Alloys and Compounds ,2013,575:319-325. [52] Li Y F,Huang Z P,Huang K, et al . Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers[J] . Energy & Environmental Science ,2013,6(11):3339-3345. [53] Li Y L,Li X F,Geng D S, et al . Carbon black cathodes for lithium oxygen batteries:Influence of porosity and heteroatom-doping[J] . Carbon ,2013,64:170-177. [54] Zhai D Y,Wang H H,Yang J B, et al. Disproportionation in LiO 2 batteries based on a large surface area carbon cathode[J] . Journal of the American Chemical Society ,2013,135(41):15364-15372. [55] Catherino H A. Estimation of the heat generation rates in electrochemical cells[J] . Journal of Power Sources ,2013,239:505-512. [56] Xiao M,Choe S Y. Theoretical and experimental analysis of heat generations of a pouch type LiMn 2 O 4 /carbon high power Li-polymer battery[J] . Journal of Power Sources ,2013,241:46-55. [57] Ebner M,Marone F,Stampanoni M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J] . Science ,2013,342(6159):716-720. [58] Liu X S,Wang D D,Liu G, et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy[J] . Nature Communications ,2013,4:doi: 10.1038/ ncomms3568. [59] Han S,Park J,Lu W, et al . Numerical study of grain boundary effect on Li + effective diffusivity and intercalation-induced stresses in Li-ion battery active materials[J] . Journal of Power Sources ,2013,240:155-167. [60] Illig J,Schmidt J P,Weiss M, et al . Understanding the impedance spectrum of 18650 LiFePO 4 -cells[J] . Journal of Power Sources ,2013,239:670-679. [61] Ansean D,Gonzalez M,Viera J C, et al . Fast charging technique for high power lithium iron phosphate batteries:A cycle life analysis[J] . Journal of Power Sources ,2013,239:9-15. [62] Kabitz S,Gerschler J B,Ecker M, et al . Cycle and calendar life study of a graphite vertical bar Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 Li-ion high energy system. Part A:Full cell characterization[J] . Journal of Power Sources ,2013,239:572-583. [63] Ponrouch A,Goni A R,Sougrati M T, et al . A new room temperature and solvent free carbon coating procedure for battery electrode materials[J] . Energy & Environmental Science ,2013,6(11):3363-3371. [64] Remmlinger J,Buchholz M,Soczka-guth T, et al . On-board state-of-health monitoring of lithium-ion batteries using linear parameter-varying models[J] . Journal of Power Sources ,2013,239:689-695. [65] Waag W,Fleischer C,Sauer D U. Adaptive on-line prediction of the available power of lithium-ion batteries[J] . Journal of Power Sources ,2013,242:548-559. [66] Lee K J,Smith K,Pesaran A, et al . Three dimensional thermal-,electrical-,and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries[J] . Journal of Power Sources ,2013,241:20-32. [67] Wang D,Miao Q,Pecht M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model[J] . Journal of Power Sources ,2013,239:253-264. [68] Ali M Y,Lai W J,Pan J. Computational models for simulations of lithium-ion battery cells under constrained compression tests[J] . Journal of Power Sources ,2013,242:325-340. [69] An Y H,Jiang H Q. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries[J] . Modelling and Simulation in Materials Science and Engineering ,2013,21(7):doi: 10.1088/0965-0393/21/7/074007. [70] Araujo R B,Scheicher R H,Dealmeida J S, et al . First-principles investigation of Li ion diffusion in Li 2 FeSiO 4 [J] . Solid State Ionics ,2013,247:8-14. [71] Hajiyani H R,Preiss U,Drautz R, et al . High-throughput ab initio screening of binary solid solutions in olivine phosphates for Li-ion battery cathodes[J] . Modelling and Simulation in Materials Science and Engineering ,2013,21(7):doi: 10.1088/0965-0393/21/7/074004. [72] Ling C,Chen J J,Mizuno F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate:The important role of ionic radius[J] . Journal of Physical Chemistry C ,2013,117(41):21158-21165. [73] Preiss U,Borukhovich E,Alemayehu N, et al . A permeation model for the electrochemical interface[J] . Modelling and Simulation in Materials Science and Engineering ,2013,21(7):doi: 10.1088/0965-0393/21/7/074006. [74] Browning K L,Baggetto L,Unocic R R, et al. Gas evolution from cathode materials:A pathway to solvent decomposition concomitant to SEI formation[J] . Journal of Power Sources ,2013,239:341-346. [75] Filso M O,Turner M J,Gibbs G V, et al. Visualizing lithium-ion migration pathways in battery materials[J] . Chemistry : A European Journal ,2013,19(46):15535-15544. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||