储能科学与技术 ›› 2014, Vol. 3 ›› Issue (2): 117-122.doi: 10.3969/j.issn.2095-4239.2014.02.004

• 研究及进展 • 上一篇    下一篇

回流辅助水热法制备锂离子电池SnO2/C负极材料

夏冬冬1,2, 杨学林1, 郑安华1, 陶华超1, 周永涛1, 温兆银3   

  1. 1三峡大学材料与化工学院,湖北 宜昌 443002;
    2三峡大学新能源研究院,湖北 宜昌 443002;
    3中国科学院上海硅酸盐研究所,上海,200050
  • 收稿日期:2013-11-25 出版日期:2014-03-01 发布日期:2014-03-01
  • 通讯作者: 杨学林,教授,研究方向为新型锂离子电池硅基,石墨基负极材料及磷酸铁锂正极材料,E-mail:xlyang@ctgu.edu.cn.
  • 作者简介:夏冬冬(1990--),男,硕士研究生,研究方向为锂离子电池负极材料,E-mail:sudorain@gmail.com;
  • 基金资助:
    国家自然科学基金(51272128,51302153,51302152),湖北省教育厅重点项目(D20131303),湖北省杰出青年基金(2011CDA093)项目

Synthesis of SnO2/C anode for lithium ion battery by a reflux-assisted hydrothermal method

XIA Dongdong1,2, YANG Xuelin1, ZHENG Anhua1, TAO Huachao1, ZHOU Yongtao1, WEN Zhaoyin3   

  1. 1College of Materials and Chemical Engineering,Three Gorges University,Yichang 443002,Hubei,China;
    2Research Institute of New Energy,Three Gorges University,Yichang 443002,Hubei,China;
    3Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China
  • Received:2013-11-25 Online:2014-03-01 Published:2014-03-01

摘要: 以氯化亚锡(SnCl2·2H2O)及聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)为原料,通过回流辅助水热法制备了SnO2/C复合材料并将其用作锂离子电池负极材料.采用X射线衍射仪(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析材料的结构和形貌;用恒流充放电,交流阻抗(EIS)和循环伏安(CV)对复合材料作为锂离子电池负极材料的电化学性能进行表征.所制备的复合材料中,纳米SnO2晶粒(5~10 nm)均匀分散在由PVP热解形成的无定形碳中.电化学性能测试表明,该复合材料100次循环后,可逆容量为591.7 mA·h/g,呈现较好的循环性能.优异的电化学性能主要归因于纳米SnO2颗粒在无定形碳基体中均匀分散及无定形碳对锡颗粒体积变化的有效缓冲.

关键词: SnO2/C, 回流辅助水热法, 锂离子电池, 负极

Abstract: SnO2/C composites were synthesized by a reflux-assisted hydrothermal method using SnCl2·2H2O and polyvinylpyrrolidone (PVP) as raw materials. Crystalline structures and morphology of the composite particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical performacne of the composites were evaluated using Galvanostatic charge-discharge, electrochemical impedance spectrum (EIS) and cyclic voltammetry (CV) devices. The results showed that the SnO2/PVP composites could deliver a reversible discharge capacity of 591.7 mA·h·g-1 after 100 cycles, indicating an excellent cycling performance. High extent of dispersion of SnO2 nanoparticles (5~10 nm) in amorphous carbon and good buffering effect to absorb the volume change of tin particles during the charging/discharging process were proposed to be the main reasons for the observed high material performance.

Key words: SnO2/C, reflux-assisted method, lithium ion battery, anode

中图分类号: