储能科学与技术 ›› 2014, Vol. 3 ›› Issue (5): 495-508.doi: 10.3969/j.issn.2095-4239.2014.05.008
郑新港1, 丁玉龙2
收稿日期:
2014-04-14
出版日期:
2014-09-01
发布日期:
2014-09-01
作者简介:
第一作者及通讯联系人:郑新港(1980--),男,助理研究员,研究方向为吸附热泵,E-mail:xgzheng@ipe.ac.cn.
ZHENG Xingang1, DING Yulong2
Received:
2014-04-14
Online:
2014-09-01
Published:
2014-09-01
摘要: 吸附热泵是一种以低品位热能驱动的节能环保型热泵技术,利用吸附剂与吸附质间的吸附热实现制冷或制热效果,从文献检索结果来看该技术越来越受到广泛关注,国内外相关学者开展了大量的研究工作.本文首先介绍了开展吸附热泵相关研究的课题组和其主要研究方向,进而简要介绍了吸附式热泵技术;其次,着重描述了吸附热泵技术的国内外研究现状,对吸附工质的研究,床层的传热传质强化,热泵新技术及商业化热泵产品等进行了详细的叙述;最后,叙述了吸附式热泵当前存在的主要问题,指出了吸附热泵发展存在的挑战性问题和未来的发展方向.
中图分类号:
郑新港, 丁玉龙. 吸附热泵技术和应用研究进展[J]. 储能科学与技术, 2014, 3(5): 495-508.
ZHENG Xingang, DING Yulong. Recent progress in the adsorption heat pump technology[J]. Energy Storage Science and Technology, 2014, 3(5): 495-508.
[1] Critoph R E. Solid sorption cycles:A short history[J]. International Journal of Refrigeration : Revue Internationale Du Froid ,2012,35(3):490-493. [2] Wang R Z. Efficient adsorption refrigerators integrated with heat pipes[J]. Applied Thermal Engineering ,2008,28(4):317-326. [3] Wang R Z. Adsorption refrigeration research in Shanghai Jiao Tong university[J]. Renewable & Sustainable Energy Reviews ,2001,5(1):1-37. [4] Wang R Z,Xia Z Z,Wang L W, et al . Heat transfer design in adsorption refrigeration systems for efficient use of low grade thermal energy[C]//Washington:Proceedings of the Asme International Heat Transfer Conference,2010:575-589. [5] Wang L W,Wang R Z,Oliveira R G. A review on adsorption working pairs for refrigeration[J]. Renewable & Sustainable Energy Reviews ,2009,13(3):518-534. [6] Zhu D S,Wu H J,Wang S W. Experimental study on composite silica gel supported CaCl 2 sorbent for low grade heat storage[J]. International Journal of Thermal Sciences ,2006,45(8):804-813. [7] Wang S W,Zhu D S. A novel type of coupling cycle for adsorption heat pumps[J]. Applied Thermal Engineering ,2002,22(9):1083-1088. [8] Zhao Z H,Zhu D S,Li J. Experimental research on preparation and adsorption properties of a new composite adsorbent[C]//Guang zhou:Proceedings of the 3rd International Symposium on Heat Transfer Enhancement and Energy Conservation,2004:876-879. [9] Passos E,Meunier F,Gianola J C. Thermodynamic performance improvement of an intermittent solar-powered refrigeration cycle using adsorption of methanol on activated carbon[J]. Journal of Heat Recovery Systems ,1986,6(3):259-264. [10] Meunier F. Sorption solar cooling[J]. Renewable Energy ,1994,5(1-4):422-429. [11] Meunier F. Solid sorption heat powered cycles for cooling and heat pumping applications[J]. Applied Thermal Engineering ,1998,18(9-10):715-729. [12] Clausse M,Meunier F,Coulie J, et al . Comparison of adsorption systems using natural gas fired fuel cell as heat source, for residential air conditioning[J]. International Journal of Refriger- ation : Revue Internationale Du Froid ,2009,32(4):712-719. [13] Critoph R E. Evaluation of alternative refrigerant-adsorbent pairs for refrigeration cycles[J]. Applied Thermal Engineering ,1996,16(11):891-900. [14] Metcalf S J,Critoph R E,Tamainot-Telto Z. Optimal cycle selection in carbon-ammonia adsorption cycles[J]. International Journal of Refrigeration-Revue Internationale Du Froid ,2012,35(3):571-580. [15] Zhong Y,Critoph R E,Thorpe R. Evaluation of the performance of solid sorption refrigeration systems using carbon dioxide as refrigerant[J]. Applied Thermal Engineering ,2006,26(16):1807-1811. [16] Tamainot-Telto Z,Critoph Z R E. Monolithic carbon for sorption refrigeration and heat pump applications[J]. Applied Thermal Engineering ,2001,21(1):37-52. [17] Okunev B N,Gromov A P,Aristov Y I. Modelling of isobaric stages of adsorption cooling cycle:An optimal shape of adsorption isobar[J]. Applied Thermal Engineering ,2013,53(1):89-95. [18] Aristov Y I. Challenging offers of material science for adsorption heat transformation:A review[J]. Applied Thermal Engineering ,2013,50(2):1610-1618. [19] Pons M F,Meunier G,Cacciola R E, et al . Thermodynamic based comparison of sorption systems for cooling and heat pumping[J]. International Journal of Refrigeration : Revue Internationale Du Froid ,1999,22(1):5-17. [20] Aristov Y I,Restuccia G,Cacciola G,Parmon V N. A family of new working materials for solid sorption air conditioning systems[J]. Applied Thermal Engineering ,2002,22(2):191-204. [21] Miles D J,Shelton S V. Design and testing of a solid-sorption heat-pump system[J]. Applied Thermal Engineering ,1996,16(5):389-394. [22] Khan M Z I,Alam K C A,Saha B B, et al . Parametric study of a two-stage adsorption chiller using re-heat:The effect of overall thermal conductance and adsorbent mass on system performance[J]. International Journal of Thermal Sciences ,2006,45(5):511-519. [23] Teng Yi(滕毅),Wang Ruzhu(王如竹). Progress on adsorption refrigeration technology[J]. Journal of Shanghai Jiao Tong University (上海交通大学学报),1998(04):111-115. [24] Wongsuwan W,Kumar S,Neveu P,Meunier F. A review of chemical heat pump technology and applications[J]. Applied Thermal Engineering ,2001,21(15):1489-1519. [25] Li Tingxian(李廷贤),Wang Ruzhu(王如竹),Wang Liwei(王丽伟).低品位热能驱动的高效热化学吸附式制冷研究[J]. Science in China Press (科学通报),2008,53(24):2978-2993. [26] Demir H,Mobedi M,Ulku S. A review on adsorption heat pump:Problems and solutions[J]. Renewable & Sustainable Energy Reviews ,2008,12(9):2381-2403. [27] Pons M,Kodama A. Entropic analysis of adsorption open cycles for air conditioning, Part 1:First and second law analyses[J]. International Journal of Energy Research ,2000,24(3):251-262. [28] Kodama A,Jin W L,Goto M,Hirose T,Pons M. Entropic analysis of adsorption open cycles for air conditioning, Part 2:Interpretation of experimental data[J]. International Journal of Energy Research ,2000,24(3):263-278. [29] Chahbani M H,Labidi J,Paris J. Effect of mass transfer kinetics on the performance of adsorptive heat pump systems[J]. Applied Thermal Engineering ,2002,22(1):23-40. [30] Askalany A A,Salem M,Ismael I M,Ali A H H,Morsy M G,Saha B B. An overview on adsorption pairs for cooling[J]. Renewable & Sustainable Energy Reviews ,2013,19:565-572. [31] Saha B B,Chakraborty A,Koyama S,Aristov Y I. A new generation cooling device employing CaCl 2 -in-silica gel-water system[J]. International Journal of Heat and Mass Transfer ,2009,52(1-2):516-524. [32] Beck J S,Vartuli J C,Roth W J, et al . A new family of mesoporous molecular-sieves prepared with liquid-crystal templates[J]. Journal of the American Chemical Society ,1992,114(27):10834-10843. [33] Schlögl R. Handbook of Porous Solids[M]. New York:Wiley-VCH,2002. [34] Barton T J,Bull L M,Klemperer W G, et al . Tailored porous materials[J]. Chemistry of Materials ,1999,11(10):2633-2656. [35] Janchen J D,Ackermann H,Stach W, et al . Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat[J]. Solar Energy ,2004,76(1-3):339-344. [36] Shimooka S,Oshima K,Hidaka H, et al . The evaluation of direct cooling and heating desiccant device coated with FAM[J]. Journal of Chemical Engineering of Japan ,2007,40(13):1330-1334. [37] Aristov Y I. Novel materials for adsorptive heat pumping and storage:Screening and nanotailoring of sorption properties[J]. Journal of Chemical Engineering of Japan ,2007,40(13):1242-1251. [38] Ehrenmann J,Henninger S K,Janiak C. Water adsorption characteristics of MIL-101 for heat transformation applications of MOFs[J]. European Journal of Inorganic Chemistry ,2011,4:471-474. [39] Critoph R E,Zhong Y. Review of trends in solid sorption refrigeration and heat pumping technology[J]. Journal of Process Engineering ,2004,19(E3):285-300. [40] Follin S,GoetzV,GuillotA. Influence of microporous characteristics of activated carbons on the performance of an adsorption cycle for refrigeration[J]. Industrial & Engineering Chemistry Research ,1996,35(8):2632-2639. [41] Tamainot-Telto Z,Metcalf S J,Critoph R E, et al . Carbon-ammonia pairs for adsorption refrigeration applications:Ice making, air conditioning and heat pumping[J]. International Journal of Refrigeration : Revue Internationale Du Froid ,2009,32(6):1212-1229. [42] Vasiliev L L,Kanonchik L E,Antuh A A, et al . NaX zeolite, carbon fibre and CaCl 2 ammonia reactors for heat pumps and refrigerators[J]. Adsorption Journal of the International Adsor- ption Society ,1996,2(4):311-316. [43] Vasiliev L L,Nikanpour D,Antukh A, et al . Multisalt-carbon chemical cooler for space applications[J]. Journal of Engineering Physics and Thermophysics ,1999,72(3):572-577. [44] Attan D,Alghoul M A,Saha B B, et al . The role of activated carbon fiber in adsorption cooling cycles[J]. Renewable & Sustainable Energy Reviews ,2011,15(3):1708-1721. [45] Gordeeva L G,Restuccia G,Cacciola G, et al . Selective water sorbents for multiple applications.5.LiBr confined in mesopores of silica gel:Sorption properties[J]. Reaction Kinetics and Catalysis Letters ,1998,63(1):81-88. [46] Gordeeva L G,Grekova A D,Krieger T A, et al . Adsorption properties of composite materials (LiCl plus LiBr)/silica[J]. Microporous and Mesoporous Materials ,2009,126(3):262-267. [47] Gordeeva L,Grekova A,Krieger T, et al . Composites "binary salts in porous matrix" for adsorption heat transformation[J]. Applied Thermal Engineering ,2013,50(2):1633-1638. [48] Tokarev M M,Freni A,Restuccia G,Aristov Y I. Selective water sorbents for multiple applications.12.Water sorption equilibrium at elevated temperature[J]. Reaction Kinetics and Catalysis Letters ,2002,76(2):295-301. [49] Aristov Y I,Restuccia G,Tokarev M M, et al . Selective water sorbents for multiple applications.11.CaCl 2 confined to expanded vermiculite[J]. Reaction Kinetics and Catalysis Letters ,2000,71(2):377-384. [50] Gordeeva L G,Mrowiec-Bialon J,Jarzebski A B, et al . Selective water sorbents for multiple applications.8.Sorption properties of CaCl 2 -SiO 2 sol-gel composites[J]. Reaction Kinetics and Catalysis Letters ,1999,66(1):113-120. [51] Aristov Y I,DiMarco G,Tokarev M M,Parmon V N. Selective water sorbents for multiple applications.3.CaCl 2 solution confined in micro- and mesoporous silica gels:Pore size effect on the ''solidification-melting'' diagram[J]. Reaction Kinetics and Catalysis Letters ,1997,61(1):147-154. [52] Aristov Y I,Tokarev M,Cacciola G,Restuccia G. Selective water sorbents for multiple applications .1.CaCl 2 confined in mesopores of silica gel:Sorption properties[J]. Reaction Kinetics and Catalysis Letters ,1996,59(2):325-333. [53] Glaznev I,Ponomarenko I,Kirik S,Aristov Y. Composites CaCl 2 /SBA-15 for adsorptive transformation of low temperature heat:Pore size effect[J]. International Journal of Refrigeration : Revue Internationale Du Froid ,2011,34(5):1244-1250. [54] Moreno-Castilla C,Perez-Cadenas A F. Carbon-based honeycomb monoliths for environmental gas-phase applications[J]. Materials ,2010,3(2):1203-1227. [55] Chahbani M H,Labidi J,Paris J. Modeling of adsorption heat pumps with heat regeneration[J]. Applied Thermal Engineering ,2004,24(2-3):431-447. [56] Douss N,Meunier F E,Sun L M. Predictive model and experimental results for a 2-adsorber solid adsorption heat-pump[J]. Industrial & Engineering Chemistry Research ,1988,27(2):310-316. [57] Restuccia G,Recupero V,Cacciola G,Rothmeyer M. Zeolite heat-pump for domestic heating[J]. Energy ,1988,13(4):333-342. [58] Rezk A,Al-Dadah R K,Mahmoud S,Elsayed A. Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller[J]. Applied Thermal Engineering ,2013,53(2):278-284. [59] Wang L J,Zhu D S,Tan Y K. Heat transfer enhancement on the adsorber of adsorption heat pump[J]. Adsorption : Journal of the International Adsorption Society ,1999,5(3):279-286. [60] Yu Shunhui(余舜辉),Chen Li(陈砺). Analysis and enhancement of the heat and mass transfer process in the adsorber of the solid adsorption refrigeration system[J]. Refrigeration (制冷),2001,20(2):43-47. [61] Watanabe F,Watabe Y,Katsuyama H, et al . Heat-transfer accompanied by adsorption desorption of water-vapor in adsorption heat-pump of packed-bed type[J]. Kagaku Kogaku Ronbunshu ,1993,19(1):83-90. [62] Freni A,Bonaccorsi L,Proverbio E, et al . Zeolite synthesised on copper foam for adsorption chillers:A mathematical model[J]. Microporous and Mesoporous Materials ,2009,120(3):402-409. [63] Restuccia G,Freni A,Maggio G. A zeolite-coated bed for air conditioning adsorption systems:Parametric study of heat and mass transfer by dynamic simulation[J]. Applied Thermal Engineering ,2002,22(6):619-630. [64] Eun T H,Song H K,Han J H, et al . Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps .Part II. Cooling system using the composite blocks[J]. International Journal of Refrigeration : Revue Internationale Du Froid ,2000,23(1):74-81. [65] Speidel K,Kleinemeier H P. Solar cooling and air-conditioning processes using chemical-reactions[C]//Denver:1991 Solar World Congress,1992:1601-1606. [66] Groll M. Reaction beds for dry sorption machines[J]. Heat Recovery Systems & Chp. ,1993,13(4):341-346. [67] Eun T H,Song H K,Han J H, et al . Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps:Part I. Characterization of the composite blocks[J]. International Journal of Refrigeration : Revue Internationale Du Froid ,2000,23(1):64-73. [68] Wang S G,Wang R Z,Li X R. Research and development of consolidated adsorbent for adsorption systems[J]. Renewable Energy ,2005,30(9):1425-1441. [69] Hu P,Yao J J,Chen Z S. Analysis for composite zeolite/foam aluminum-water mass recovery adsorption refrigeration system driven by engine exhaust heat[J]. Energy Conversion and Management ,2009,50(2):255-261. [70] Gui Y B,Wang R Z,Wang W, et al . Performance modeling and testing on a heat-regenerative adsorptive reversible heat pump[J]. Applied Thermal Engineering ,2002,22(3):309-320. [71] Kubota M,Ueda T,Fujisawa R, et al. Cooling output performance of a prototype adsorption heat pump with fin-type silica gel tube module[J]. Applied Thermal Engineering ,2008,28(2-3):87-93. [72] Grisel R J H,Smeding S F,De-Boer R. Waste heat driven silica gel/water adsorption cooling in trigeneration[J]. Applied Thermal Engineering ,2010,30(8-9):1039-1046. [73] Saba B B,Koyama S,El-Sharkawy I I, et al. Experiments for measuring adsorption characteristics of an activated carbon fiber/ethanol pair using a plate-fin heat exchanger[J]. Hvac&R Research ,2006,12(3B):767-782. [74] Miyazaki T,Akisawa A. The influence of heat exchanger parameters on the optimum cycle time of adsorption chillers[J]. Applied Thermal Engineering ,2009,29(13):2708-2717. [75] Guilleminot J J,Choisier A,Chalfen J B, et al. Heat-transfer intensification in fixed-bed adsorbers[J]. Heat Recovery Systems & Chp. ,1993,13(4):297-300. [76] Alam K C A,Saha B B,Kang Y T, et al . Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems[J]. International Journal of Heat and Mass Transfer ,2000,43(24):4419-4431. [77] Tangkengsirisin V,Kanzawa A,Watanabe T. A solar-powered adsorption cooling system using a silica gel water mixture[J]. Energy ,1998,23(5):347-353. [78] Zhu Dongsheng(朱冬生),Wang Lijun (汪立军),Kang Xinyu(康新宇),Tan Yingke(谭盈科),Wang Shengwei(王盛卫). An experimental study of heat conduction enhancement on the solar-powered adsorber[J]. ACTA Energiae Solaris Sinica (太阳能学报),1998,19(1):186-190. [79] Mauran S,Prades P,Lharidon F. Heat and mass-transfer in consolidated reacting beds for thermochemical systems[J]. Heat Recovery Systems & Chp. ,1993,13(4):315-319. [80] Critoph R E,Tamainot-Telto Z,Davies G N L. A prototype of a fast cycle adsorption refrigerator utilizing a novel carbon-aluminium laminate[J]. Journal of Power and Energy ,2000,214(A5):439-448. [81] Freni A,Russo F,Vasta S, et al. An advanced solid sorption chiller using SWS-1Ll[J]. Applied Thermal Engineering ,2007,27(13):2200-2204. [82] Bonaccorsi L,Freni A,Proverbio E, et al. Zeolite coated copper foams for heat pumping applications[J]. Microporous and Mesoporous Materials ,2006,91(1-3):7-14. [83] Heyden V H,Munz G,Schnabel L, et al. Kinetics of water adsorption in microporous aluminophosphate layers for regenerative heat exchangers[J]. Applied Thermal Engineering ,2009,29(8-9):1514-1522. [84] Critoph R E. Multiple bed regenerative adsorption cycle using the monolithic carbon-ammonia pair[J]. Applied Thermal Engineering ,2002,22(6):667-677. [85] Douss N,Meunier F. Experimental-study of cascading adsorption cycles[J]. Chemical Engineering Science ,1989,44(2):225-235. [86] Wang Ruzhu(王如竹),Wang Liwei(王丽伟). 低品位热能驱动的绿色制冷技术:吸附式制冷[J]. Science in China Press (科学通报),2005,50(2):101-111. [87] Ritthong W,Kiatsiriroat T,Wongsuwan W, et al. Performance analysis of a modular adsorption cooling system with sonic vibration in the adsorber[J]. Experimental Heat Transfer ,2014,27(1):14-27. [88] Xue B,Iwama Y,Tanaka Y, et al. Cyclic steam generation from a novel zeolite-water adsorption heat pump using low-grade waste heat[J]. Experimental Thermal and Fluid Science ,2013,46:54-63. [89] Xue B,Tahara K,Nakashima K, et al. Numerical simulation for steam generation process in a novel zeolite-water adsorption heat pump[J]. Journal of Chemical Engineering of Japan ,2012,45(6):408-416. [90] Oktariani E,Tahara K,Nakashima K, et al. Experimental investigation on the adsorption process for steam generation using a zeolite-water system[J]. Journal of Chemical Engineering of Japan ,2012,45(5):355-362. [91] Oktariani E,Noda A,Nakashima K, et al. Potential of a direct contact adsorption heat pump system for generating steam from waste water[J]. International Journal of Energy Research ,2012,36(11):1077-1087. [92] Nakaso K,Oktariani E,Noda A, et al. Estimation of performance of absorption/desorption system for regenerating waste water from industrial process[C]//Washington:Proceedings of the Asme 5th International Conference on Energy Sustainability 2011,Pts a-C,2012:1043-1049. [93] Miles D J,Sanborn D M,Nowakowski G A,Shelton S V. Gas-fired sorption heat-pump development[J]. Heat Recovery Systems & Chp. ,1993,13(4):347-351. [94] Näslund M. Residential gas-fired sorption heat pumps[EB/OL]. 2008. http://www.risoe.dk/rispubl/NEI/NEI-DK-5118.pdf. [95] Yong L,Sumathy K. Performance analysis of a continuous multi-bed adsorption rotary cooling system[J]. Applied Thermal Engineering ,2005,25(2-3):393-407. [96] Li H,Dai Y J,Li Y, et al. Experimental investigation on a one-rotor two-stage desiccant cooling/heating system driven by solar air collectors[J]. Applied Thermal Engineering ,2011,31(17-18):3677-3683. [97] Ge T S,Dai Y J,Wang R Z, et al. Experimental investigation on a one-rotor two-stage rotary desiccant cooling system[J]. Energy ,2008,33(12):1807-1815. [98] Kodama A,Hirayama T,Goto M, et al. The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel[J]. Applied Thermal Engineering ,2001,21(16):1657-1674. [99] Llobet J,Goetz V. Rotary system for the continuous production of cold by solid-gas sorption:Modeling and analysis of energy performance[J]. International Journal of Refrigeration : Revue Internationale Du Froid ,2000,23(8):609-625. [100] Stabat P,Marchio D. Heat and mass transfer modeling in rotary desiccant dehumidifiers[J]. Applied Energy ,2009,86(5):762-771. [101] Zhang X J,Dai Y J,Wang R Z. A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier[J]. Applied Thermal Engineering ,2003,23(8):989-1003. [102] TeGrotenhuis W E,Humble P H,Sweeney J B. Compact high efficiency adsorption heat pump[C]//Lafayette:International Refrigeration and Air Conditioning Conference,2012:1303. [103] TeGrotenhuis W E,Humble P H,Sweeney J B. Simulation of a high efficiency multi-bed adsorption heat pump[J]. Applied Thermal Engineering ,2012,37:176-182. [104] Wang R Z,Oliveira R G. Adsorption refrigeration:An efficient way to make good use of waste heat and solar energy[J]. Progress in Energy and Combustion Science ,2006,32(4):424-458. |
[1] | 陶飞跃, 王焕然, 李瑞雄, 赵静, 葛刚强, 贺新, 陈昊. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
[2] | 傅德坤, 宋文吉, 陈明彪, 冯自平. 跨季节蓄冷技术及在设施农业应用的经济性分析[J]. 储能科学与技术, 2021, 10(6): 2385-2391. |
[3] | 张涵, 王亮, 林曦鹏, 陈海生. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(5): 1796-1805. |
[4] | 王瑛滢, 傅德坤, 陈明彪, 宋文吉, 冯自平. 冬冷地区冰源热泵系统清洁供暖的经济性[J]. 储能科学与技术, 2021, 10(4): 1380-1387. |
[5] | 令狐友强, 徐德厚, 岳秀艳, 周学志, 徐玉杰, 盛勇, 左志涛, 陈海生. 沸石-液态水吸附储热系统的释热特性[J]. 储能科学与技术, 2021, 10(3): 1103-1108. |
[6] | 董浩晖, 王丽伟. 沸石13X在开式吸附储热中“反应波”现象研究[J]. 储能科学与技术, 2021, 10(2): 497-505. |
[7] | 翁立奎, 张叶龙, 姜琳, 贾亦轩, 谈玲华, 金翼, 丁玉龙. 基于水合盐的热化学吸附储热技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1729-1736. |
[8] | 唐晓楠1,2,孙振华1,陈 克1,杨慧聪1,禚淑萍2,李 峰1. 锂硫电池复合硫正极中客体材料与多硫化物的相互作用[J]. 储能科学与技术, 2017, 6(3): 345-359. |
[9] | 尚永亮1,王诚文1,刘 斌1,刘 军1,2,柯 曦1,2,刘丽英1,2,施志聪1,2. MnO2包覆的碳纳米管-硫复合正极材料的制备及性能[J]. 储能科学与技术, 2017, 6(3): 411-417. |
[10] | 宋鹏翔, 丁玉龙. 化学热泵系统在储热技术中的理论与应用[J]. 储能科学与技术, 2014, 3(3): 227-235. |
[11] | 李廷贤, 李卉, 闫霆, 王如竹. 大容量热化学吸附储热原理及性能分析[J]. 储能科学与技术, 2014, 3(3): 236-243. |
[12] | 马洪运, 贾志军, 吴旭冉, 廖斯达, 王保国. 电化学基础(Ⅳ)----电极过程动力学[J]. 储能科学与技术, 2013, 2(3): 267-271. |
[13] | 李永亮, 金翼, 黄云, 叶锋, 汪翔, 李大成, 王彩霞, 丁玉龙. 储热技术基础(Ⅱ)----储热技术在电力系统中的应用[J]. 储能科学与技术, 2013, 2(2): 165-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||