储能科学与技术 ›› 2015, Vol. 4 ›› Issue (3): 248-259.doi: 10.3969/j.issn.2095-4239.2015.03.002
陈宇阳,胡飞,詹元杰,陈彬,王昊,闫勇,林明翔,徐凯琪,贲留斌,刘燕燕,黄学杰
收稿日期:
2015-04-15
出版日期:
2015-06-19
发布日期:
2015-06-19
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@iphy.ac.cn。
作者简介:
陈宇阳(1991—),男,硕士研究生,研究方向为锂离子电池正极材料及其理论计算,E-mail:chenyuyang13@mails.ucas.ac.cn
CHEN Yuyang, HU Fei, ZHAN Yuanjie, CHEN Bin, WANG Hao, YAN Yong, LIN Mingxiang, XU Kaiqi, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2015-04-15
Online:
2015-06-19
Published:
2015-06-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以“lithium”和“batter*”为关键词检索了Web of Science从2015年2月1日至2015年3月31日上线的锂电池研究论文,共有1204篇,选择其中100篇加以评论。正极材料主要研究了富锂相材料、三元材料和尖晶石材料的结构演变及掺杂和表面包覆对其循环寿命的影响。高容量的硅、锡基负极材料研究侧重于纳米材料、复合材料、黏结剂及反应机理研究,电解液添加剂、固态电解质、锂空电池、锂硫电池的论文也有多篇。理论模拟工作包括电极材料体相和界面结构以及电解质的输运性质,除了以材料为主的研究之外,针对电池的失效分析、热安全分析的研究论文也有多篇。
中图分类号:
陈宇阳,胡飞,詹元杰,陈彬,王昊,闫勇,林明翔,徐凯琪,贲留斌,刘燕燕,黄学杰. 锂电池百篇论文点评(2015.2.1—2015.3.31)[J]. 储能科学与技术, 2015, 4(3): 248-259.
CHEN Yuyang, HU Fei, ZHAN Yuanjie, CHEN Bin, WANG Hao, YAN Yong, LIN Mingxiang, XU Kaiqi, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Feb. 1,2015 to Mar. 31,2015)[J]. Energy Storage Science and Technology, 2015, 4(3): 248-259.
[1] Hsieh C T,Hsu H H,Mo C Y,et al. Medium-frequency induction sintering of lithium nickel cobalt manganese oxide cathode materials for lithium ion batteries[J]. Solid State Ionics,2015,270:39-46. [2] Camardese J,Li J,Abarbanel D W,et al. The effect of lithium content and core to shell ratio on structure and electrochemical performance of core-shell Li1+xNi0.6Mn0.4(1–x)O2-Li1+yNi0.2Mn0.8(1–y)O2 positive electrode materials[J]. Journal of the Electrochemical Society,2015,162(3):A269-A277. [3] Buchholz D,Li J,Passerini S,et al. X-ray absorption spectroscopy investigation of lithium-rich, cobalt-poor layered-oxide cathode material with high capacity[J]. Chemelectrochem,2015,2(1):85-97. [4] Geder J,Song J H,Kang S H,et al. Thermal stability of lithium-rich manganese-based cathode[J]. Solid State Ionics,2014,268:242-246. [5] Kuriyama H,Saruwatari H,Satake H,et al. Observation of anisotropic microstructural changes during cycling in LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Journal of Power Sources,2015,275:99-105. [6] Genevois C,Koga H,Croguennec L,et al. Insight into the atomic structure of cycled lithium-rich layered oxide Li1.20Mn0.54Co0.13 Ni0.13O2 using HAADF STEM and electron nanodiffraction[J]. Journal of Physical Chemistry C,2015,119(1):75-83. [7] Taminato S,Hirayama M,Suzuki K,et al. Highly reversible capacity at the surface of a lithium-rich manganese oxide:A model study using an epitaxial film system[J]. Chemical Communications,2015,51(9):1673-1676. [8] Saravanan K,Jarry A,Kostecki R,et al. A study of room- temperature LixMn1.5Ni0.5O4 solid solutions[J]. Scientific Reports,2015,5,doi:10.1038/srep08027. [9] Howeling A,Glatthaar S,Notzel D,et al. Evidence of loss of active lithium in titanium-doped LiNi0.5Mn1.5O4/graphite cells[J]. Journal of Power Sources,2015,274:1267-1275. [10] Kim J W,Kim D H,Oh D Y,et al. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries[J]. Journal of Power Sources,2015,274:1254-1262. [11] Lee S,Yoon G,Jeong M,et al. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries[J]. Angewandte Chemie:International Edition,2015,54(4):1153-1158. [12] Kim C,Phillips P J,Xu L P,et al. Stabilization of battery electrode/electrolyte interfaces employing nanocrystals with passivating epitaxial shells[J]. Chemistry of Materials,2015,27(1):394-399. [13] Lin M X,Ben L B,Sun Y,et al. Insight into the atomic structure of high-voltage spinel LiNiO3Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials,2015,27(1):292-303. [14] Qi X,Blizanac B,DuPasquier A,et al. Influence of thermal treated carbon black conductive additive on the performance of high voltage spinel Cr-doped LiNi0.5Mn1.5O4 composite cathode electrode[J]. Journal of the Electrochemical Society,2015,162(3):A339-A343. [15] Chung S Y,Choi S Y,Kim T H,et al. Surface-orientation-dependent distribution of subsurface cation-exchange defects in olivine-phosphate nanocrystals[J]. ACS Nano,2015,9(1):850-859. [16] Piper D M,Evans T,Leung K,et al. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries[J]. Nature Communications,2015,6,doi:10.1038/nocmms7230. [17] Shimizu M,Usui H,Suzumura T,et al. Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using Raman microspectroscopy[J]. Journal of Physical Chemistry C,2015,119(6):2975-2982. [18] Vogl U S,Lux S F,Crumlin E J,et al. The mechanism of SEI formation on a single crystal Si(100) electrode[J]. Journal of the Electrochemical Society,2015,162(4):A603-A607. [19] Blanchard D,Nale A,Sveinbjornsson D,et al. Nanoconfined LiBH4 as a fast lithium ion conductor[J]. Advanced Functional Materials,2015,25(2):184-192. [20] Biserni E,Xie M,Brescia R,et al. Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method[J]. Journal of Power Sources,2015,274:252-259. [21] Favors Z,Bay H.H,Mutlu Z,et al. Towards scalable binderless electrodes:Carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 Nanofibers[J]. Scientific Reports,2015,5,doi:10.1038/srep08246. [22] Li B,Yao F,Bae J J,et al. Hollow carbon nanospheres/silicon/ alumina core-shell film as an anode for lithium-ion batteries[J]. Scientific Reports,2015,5,doi:10.1038/srep07659. [23] Han Z J,Yamagiwa K,Yabuuchi N,et al. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders[J]. Physical Chemistry Chemical Physics,2015,17(5):3783-3795. [24] Liu X H,Zhang J,Si W P,et al. Sandwich nano architecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life[J]. ACS Nano,2015,9(2):1198-1205. [25] Choi S H,Jung D S,Choi J W,et al. Superior lithium-ion storage properties of Si-based composite powders with unique Si@Carbon@Void@Graphene configuration[J]. Chemistry-A European Journal,2015,21(5):2076-2082. [26] Iwamura S,Nishihara H,Ono Y,et al. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries[J]. Scientific Reports,2015,5,doi:10.1038/ srep08085. [27] Buonaiuto M,Neuhold S,Schroeder D J,et al. Functionalizing the surface of lithium-metal anodes[J]. Chempluschem,2015,80(2):363-367. [28] Levi M D,Lukatskaya M R,Sigalov S,et al. Solving the capacitive paradox of 2D mxene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements[J]. Advanced Energy Materials,2015,5(1),doi:10.1002/ aenm.201400815. [29] Jeon J W,Kwon S R,Lutkenhaus J L. Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage[J]. Journal of Materials Chemistry A,2015,3(7):3757-3767. [30] Zhong Y R,Yang M,Zhou X L,et al. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life:Rational design of MnCO3/large-area graphene composites[J]. Advanced Materials,2015,27(5):806-812. [31] Yu C,Chen M,Li X J,et al. Hierarchically porous carbon architectures embedded with hollow nanocapsules for high-performance lithium storage[J]. Journal of Materials Chemistry A,2015,3(9):5054-5059. [32] Takahashi K,Srinivasan V. Examination of graphite particle cracking as a failure mode in lithium-ion batteries:A model-experimental study[J]. Journal of the Electrochemical Society,2015,162(4):A635-A645. [33] Huang X K,Cui S M,Chang J B,et al. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life[J]. Angewandte Chemie:International Edition,2015,54(5):1490-1493. [34] Zhong Y R,Yang M,Zhou X L,et al. Towards excellent anodes for Li-ion batteries with high capacity and super long lifespan:Confining ultrasmall Sn particles into N-rich graphene-based nanosheets[J]. Particle & Particle Systems Characterization,2015,32(1):104-111. [35] Tavassol H,Cason M W,Nuzzo R G,et al. Influence of oxides on the stress evolution and reversibility during SnOx conversion and Li-Sn alloying reactions[J]. Advanced Energy Materials,2015,5(1),doi:10.1002/aenm.201400317. [36] Chen C C,Huang Y A,An C H,et al. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries[J]. Chemsuschem,2015,8(1):114-122. [37] Guo J L,Zuo W H,Cai Y J,et al. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature[J]. Journal of Materials Chemistry A,2015,3(9):4938-4944. [38] Lu X,Gu L,Hu Y S,et al. New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode[J]. Journal of the American Chemical Society,2015,137(4):1581-1586. [39] Xie J,Oudenhoven J F M,Harks P,et al. Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(3):A249-A254. [40] Choi J H,Lee C H,Yu J H,et al. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix[J]. Journal of Power Sources,2015,274:458-463. [41] Yamada T,Ito S,Omoda R,et al. All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte:Benefits on anode kinetics[J]. Journal of the Electrochemical Society,2015,162(4):A646-A651. [42] Whiteley J M,Kim J W,Kang C S,et al. Tin networked electrode providing enhanced volumetric capacity and pressureless operation for all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(4):A711-A715. [43] Brant J A,Massi D M,Holzwarth N A W,et al. Fast lithium ion conduction in Li2SnS3:Synthesis, physicochemical characterization, and electronic structure[J]. Chemistry of Materials,2015,27(1):189-196. [44] Gellert M,Gries K I,Zakel J,et al. Charge transfer across the interface between LiNi0.5Mn1.5O4 high-voltage cathode films and solid electrolyte films[J]. Journal of the Electrochemical Society,2015,162(4):A754-A759. [45] Nowak S,Berkemeier F,Schmitz G. Ultra-thin LIPON films - fundamental properties and application in solid state thin film model batteries[J]. Journal of Power Sources,2015,275:144-150. [46] Tung S O,Ho S,Yang M,et al. A dendrite-suppressing composite ion conductor from aramid nanofibres[J]. Nature Communications,2015,6,doi:10.1038/ncomms7152. [47] Nayak P K,Grinblat J,Levi M,et al. Understanding the effect of lithium bis (oxalato) borate (LiBOB) on the structural and electrochemical aging of Li and Mn rich high capacity Li1.2Ni0.16Mn0.56Co0.08O2 cathodes[J]. Journal of the Electrochemical Society,2015,162(4):A596-A602. [48] Guo J,Wen Z Y,Wu M F,et al. Vinylene carbonate-LiNO3:A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode[J]. Electrochemistry Communications,2015,51:59-63. [49] Sussman M J,BroduschN,GauvinR,et al. Engineering 3-D Li-ion electrodes with enhanced charge storage properties based on solution-processed and sintered anatase nanocrystal-carbon mesoporous structures[J]. ACS Sustainable Chemistry & Engineering,2015,3(2):334-339. [50] Jeong M,Yokoshima T,Nara H,et al. Effect of electrolyte on cycle performances of the electrodeposited Sn-O-C composite anode of lithium secondary batteries[J]. Journal of Power Sources,2015,275:525-530. [51] Elia G A,Nobili F,TossiciR,et al. Nanostructured tin-carbon/ LiNi0.5Mn0.5O4 lithium-ion battery operating at low temperature[J]. Journal of Power Sources,2015,275:227-233. [52] Perea A,Zaghib K,Belanger D. Characterization of LiNi0.5Mn1.5O4 spinel electrode in the presence[J]. Journal of Materials Chemistry A,2015,3(6):2776-2783. [53] Petibon R,Harlow J,Le D B,et al. The use of ethyl acetate and methyl propanoate in combination with vinylene carbonate as ethylene carbonate-free solvent blends for electrolytes in Li-ion batteries[J]. Electrochimica Acta,2015,154:227-234. [54] Li S Y,Li L X,Liu J L,et al. Using a lithium difluoro (sulfato) borate additive to improve electrochemical performance of electrolyte based on lithium bis (oxalate) borate for LiNi0.5Mn1.5O4/Li cells[J]. Electrochimica Acta,2015,155:321-326. [55] Wei X L,Cosimbescu L,Xu W,et al. Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species[J]. Advanced Energy Materials,2015,5(1),doi:10.1002/aenm.201400678. [56] Deshpande R D,Ridgway P,Fu Y B,et al. The limited effect of VC in graphite/NMC cells[J]. Journal of the Electrochemical Society,2015,162(3):A330-A338. [57] Lu Y Y,Xu S M,Shu J,et al. High voltage LIB cathodes enabled by salt-reinforced liquid electrolytes[J]. Electrochemistry Communications,2015,51:23-26. [58] Pohl B,Hiller M M,Seidel S M,et al. Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability[J]. Journal of Power Sources,2015,274:629-635. [59] Rosenman A,Elazari R,Salitra G,et al. The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S battery systems[J]. Journal of the Electrochemical Society,2015,162(3):A470-A473. [60] Matsui M,Wada A,Matsuda Y,et al. A novel aqueous lithium-oxygen cell based on the oxygen-peroxide redox couple[J]. Chemical Communications,2015,51(15):3189-3192. [61] Thieme S,Bruckner J,Meier A,et al. A lithium-sulfur full cell with ultralong cycle life:Influence of cathode structure and polysulfide additive[J]. Journal of Materials Chemistry A,2015,3(7):3808-3820. [62] Wu C,Yuan L X,Li Z,et al. Novel double-cathode configuration to improve the cycling stability of lithium-sulfur battery[J]. RSC Advances,2015,5(19):14196-14201. [63] Zhou G M,Li L,Wang D W,et al. A flexible sulfur-graphene- polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials,2015,27(4):641-647. [64] Kolosnitsyn V S,Kuzmina E V,Karaseva E V. On the reasons for low sulphur utilization in the lithium-sulphur batteries[J]. Journal of Power Sources,2015,274:203-210. [65] Agostini M,Hassoun J. A lithium-ion sulfur battery using a polymer, polysulfide-added membrane[J]. Scientific Reports,2015,5,doi:10.1038/srep07591. [66] Liang X,Hart C,Pang Q,et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications,2015,6,doi:10.1038/ncomms6682. [67] Nagao M,Hayashi A,Tatsumisago M,et al. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries[J]. Journal of Power Sources,2015,274:471-476. [68] Pang W K,Alam M,Peterson V K,et al. Structural evolution of electrodes in the NCR and CGR cathode-containing commercial lithium-ion batteries cycled between 3.0 and 4.5 V:An operando neutron powder-diffraction study[J]. Journal of Materials Research,2015,30(3):373-380. [69] Seid K A,Badot J C,PercaC,et al. An in situ multiscale study of ion and electron motion in a lithium-ion battery composite electrode[J]. Advanced Energy Materials,2015,5(2),doi:10.1002/aenm. 201400903. [70] Klett M,Svens P,Tengstedt C,et al. Uneven film formation across depth of porous graphite electrodes in cycled commercial Li-ion batteries[J]. Journal of Physical Chemistry C,2015,119(1):90-100. [71] Feng X N,Sun J,Ouyang M G,et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources,2015,275:261-273. [72] Seidlmayer S,Hattendorff J,Buchberger I,et al. In operando small-angle neutron scattering (SANS) on Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(2):A3116-A3125. [73] Itagaki M,Honda K,Hoshi Y,et al. In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle[J]. Journal of Electroanalytical Chemistry,2015,737:78-84. [74] Fleischhammer M,Waldmann T,Bisle G,et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources,2015,274:432-439. [75] Hess S,Wohlfahrt-Mehrens M,Wachtler M. Flammability of Li-ion battery electrolytes:Flash point and self-extinguishing time measurements[J]. Journal of the Electrochemical Society,2015,162(2):A3084-A3097. [76] Guo Z,Liaw B Y,Qiu X P,et al. Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging[J]. Journal of Power Sources,2015,274:957-964. [77] Dees D W,Abraham D P,Lu W Q,et al. Electrochemical modeling and performance of a lithium- and manganese-rich layered transition-metal oxide positive electrode[J]. Journal of the Electrochemical Society,2015,162(4):A559-A572. [78] Petzl M,Kasper M,Danzer M A. Lithium plating in a commercial lithium-ion battery:A low-temperature aging study[J]. Journal of Power Sources,2015,275:799-807. [79] Sabatier J,Francisco J M,Guillemard F,et al. Lithium-ion batteries modeling:A simple fractional differentiation based model and its associated parameters estimation method[J]. Signal Processing,2015,107:290-301. [80] Sarasketa-Zabala E,Gandiaga I,Martinez-Laserna E,et al. Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations:Towards realistic lifetime predictions[J]. Journal of Power Sources,2015,275:573-587. [81] Sun F C,Xiong R. A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles[J]. Journal of Power Sources,2015,274:582-594. [82] Wang F M,Rick J. Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to commercial type lithium ion batteries[J]. Solid State Ionics,2014,268:31-34. [83] Zhu J G,Sun Z C,Wei X Z,et al. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement[J]. Journal of Power Sources,2015,274:990-1004. [84] Chaoui H,Golbon N,Hmouz I,et al. Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics,2015,62(3):1610-1618. [85] Hernandez-Maya R,Rosas O,Saunders J,et al. Dynamic characterization of dendrite deposition and growth in Li-surface by electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society,2015,162(4):A687-A696. [86] Huang J,Li Z,Zhang J B,et al. An analytical three-scale impedance model for porous electrode with agglomerates in lithium-ion batteries[J]. Journal of the Electrochemical Society,2015,162(4):A585-A595. [87] Sarasketa-Zabala E,Aguesse F,Villarreal I,et al. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps[J]. Journal of Physical Chemistry C,2015,119(2):896-906. [88] Xiao M,Choe S Y. Impedance model of lithium ion polymer battery considering temperature effects based on electrochemical principle:Part I for high frequency[J]. Journal of Power Sources,2015,277:403-415. [89] Rashid M,Gupta A. Effect of relaxation periods over cycling performance of a Li-ion battery[J]. Journal of the Electrochemical Society,2015,162(2):A3145-A3153. [90] Islam M M,Ostadhossein A,Borodin O,et al. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials[J]. Physical Chemistry Chemical Physics,2015,17(5):3383-3393. [91] Jana A,Ely D R,Garcia R E. Dendrite-separator interactions in lithium-based batteries[J]. Journal of Power Sources,2015,275:912-921. [92] Jonsson E,Johansson P. Electrochemical oxidation stability of anions for modern battery electrolytes:A CBS and DFT study[J]. Physical Chemistry Chemical Physics,2015,17(5):3697-3703. [93] Majdabadi M M,Farhad S,Farkhondeh M,et al. Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries[J]. Journal of Power Sources,2015,275:633-643. [94] Jain A,Hautier G,Ong S P,et al. Relating voltage and thermal safety in Li-ion battery cathodes:A high-throughput computational study[J]. Physical Chemistry Chemical Physics,2015,17(8):5942-5953. [95] Sumita M,Tanaka Y,Ikeda M,et al. Theoretically designed Li3PO4 (100) /LiFePO4 (010) coherent electrolyte/cathode interface for all solid-state Li ion secondary batteries[J]. Journal of Physical Chemistry C,2015,119(1):14-22. [96] Xie Y Y,Yuan C. An integrated anode stress model for commercial LixC6-LiyMn2O4 battery during the cycling operation[J]. Journal of Power Sources,2015,274:101-113. [97] Ong M T,Verners O,Draeger E W,et al. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics[J]. Journal of Physical Chemistry B,2015,119(4):1535-1545. [98] Steiger J,Richter G,Wenk M,et al. Comparison of the growth of lithium filaments and dendrites under different conditions[J]. Electrochemistry Communications,2015,50:11-14. [99] Shen Y F,Yuan D D,Ai X P,et al. High capacity and cycling stability of poly (diaminoanthraquinone) as an organic cathode for rechargeable lithium batteries[J]. Journal of Polymer Science Part B:Polymer Physics,2015,53(4):235-238. [100] Fares R L,Webber M E. Combining a dynamic battery model with high-resolution smart grid data to assess microgrid islanding lifetime[J]. Applied Energy,2015,137:482-489. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||