储能科学与技术 ›› 2015, Vol. 4 ›› Issue (5): 433-457.doi: 10.3969/j.issn.2095-4239.2015.05.001
• 研究及进展 • 下一篇
收稿日期:
2015-07-23
出版日期:
2015-10-19
发布日期:
2015-10-19
CAO Liuyue, SKYLLAS-KAZACOS Maria, WANG Dawei
Received:
2015-07-23
Online:
2015-10-19
Published:
2015-10-19
Contact:
Skyllas-Kazacos Maria, Em.Prof, fields of research: energy generation, conversion and storage engineering, electrochemistry, process control and simulation, E-mail:M.Kazacos@unsw.edu.au.
About author:
Cao Liuyue (1991—), PhD candidate, fields of research: vanadium redox flow batteries and carbon materials, E-mial:l.cao@student.unsw.edu.au
中图分类号:
. [J]. 储能科学与技术, 2015, 4(5): 433-457.
CAO Liuyue, SKYLLAS-KAZACOS Maria, WANG Dawei. Electrode modification and electrocatalysis for redox flow battery (RFB) applications[J]. Energy Storage Science and Technology, 2015, 4(5): 433-457.
[1] Thaller L H. Redox flow cell development and demonstration project, calendar year 1977[R]. Cleveland:National Aeronautics and Space Administration,1977. [2] Weber A Z,Mench M M,Meyers J P,Ross P N,Gostick J T,Liu Q. Redox flow batteries:A review[J]. J. Appl. Electrochem. ,2011,41:1137-1164. [3] Fedkiw P S,Watts R W. Membranes for redox flow battery applications[J]. Electrochem. Soc. ,1984,131:701-709. [4] Horne C R,Nevins S. Long-duration, grid-scale iron-chromium redox flow battery systems[EB/OL]. 2014. http://www.sandia.gov/ess/docs/pr_conferences/2014/Thursday/Session7/01_Nevins_Sheri_IRON-CHROMIUM_REDOX.pdf. [5] Remick R J,Ang P G P. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system:US,4485154[P]. 1984-11-27. [6] Skyllas-Kazacos M. Novel vanadium chloride/polyhalide redox flow battery[J]. J. Power Sources ,2003,124(1):299-302. [7] Kazacos M,Skyllas-Kazacos M,Kazacos N. Novel vanadium halide redox flow battery:US,2010/0291420A1[P]. 2010-11-18. [8] Li L,Kim S,Xia G,Wang W,Yang Z G. Advanced redox flow batteries for stationary electrical energy storage[R]. Washington:PNNL-21174,2012. [9] Bae C H,Roberts H E P L,Dryfe R A W. Chromium redox couples for application to redox flow batteries[J]. Electrochim. Acta ,2002,48(3):279-287. [10] Bae C,Roberts E P L,Chakrabarti M H,Saleem M. All-chromium redox flow battery for renewable energy storage[J]. Int. J. Green Energy ,2011,8(2):248-264. [11] Giner J,Swette L,Cahill K. Screening of redox couples and electrode materials[R]. Massachusetts:NASA CR-134705,1976. [12] Giner J,Cahill K. Advanced screening of electrode couples[R]. Cleveland:NASA CR-159738,1980. [13] Yang C Y. Catalytic electrodes for the redox flow cell energy storage device[J]. J. Appl. Electrochem. ,1982,12(4):425-434. [14] Cheng D S. The influence of thallium on the redox reaction Cr 3+ /Cr 2+ [J]. J. Electrochem. Soc. ,1985,132 (2):269. [15] Hollax E,Cheng D S. The influence of oxidative pretreatment of graphite electrodes on the catalysis of the Cr 3+ /Cr 2+ and Fe 3+ /Fe 2+ redox reactions[J]. Carbon ,1985,23(6):655-664. [16] Wu C D. A bismuth-based electrocatalyst for the chromous-chromic couple in acid electrolytes[J]. J. Electrochem. Soc. ,1986,133(10):2109. [17] Inoue M. Carbon fiber electrode for redox flow battery[J]. J. Electrochem. Soc. ,1987,134 (3):756. [18] Rodes A,Feliu J M,Aldaz A,Clavilier J. The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr 3+ /Cr 2+ [J]. J. Electroanal. Chem. Interfacial Electrochem. ,1989,271(1-2):127-139. [19] Lopez-Atalaya M,Codina G,Perez J R,Vazquez J L,Aldaz A,Climent M A. Behaviour of the Cr 3+ /Cr 2+ reaction on gold-graphite electrodes:Application to redox flow storage cell[J]. J. Power Sources ,1991,35(3):225-234. [20] Pecsok R L,Shields L D,Schaefer W P. Complexes of Cr 3+ /Cr 2+ with ethylenediaminetetraacetic acid[J]. Inorg. Chem. ,1964,3(1):114-116. [21] Walsh J H,Earley J E. Reduction potentials of some chromium(III) complexes[J]. Inorg. Chem. ,1964,3(3):343-347. [22] Hodes G,Manassen J,Cahen D. Photo-electrochemical energy conversion:Electrocatalytic sulphur electrodes[J]. J. Appl. Electrochem. ,1977,7(2):181-182. [23] Hodes G,Manassen J. Electrocatalytic electrodes for the polysulfide redox system[J]. J. Electrochem. Soc. ,1980,127(3):544. [24] Lessner P. Kinetics of aqueous polysulfide solutions[J]. J. Electrochem. Soc. ,1986,133(12):2517. [25] Lessner P M,McLarnon F R,Winnick J,Cairns E J. Aqueous polysulphide flow-through electrodes:Effects of electrocatalyst and electrolyte composition on performance[J]. J. Appl. Electrochem. ,1992,22(10):927-934. [26] Licht S. Polysulfide battery:US,4828942[P]. 1989-05-09. [27] Kegelman M. Voltaic cell with fused copper sulfide cathode:US,3847674[P]. 1974-11-12. [28] Cooley G E,Cox J D,Cranstone W R I,Male S E. Process for the preparation of reticulated copper or nickel sulfide:WO,2000016420A1[P]. 2000-03-23. [29] Clark D G,Turpin C M,Whyte I,Cooley E G. Vitrified carbon compositions:WO,2000015576 A1[P]. 2000-03-23. [30] Morrissey P J. Method of operating a fuel cell:WO,2001073882 A1[P]. 2001-03-04. [31] Zhao P,Zhang H,Zhou H,Yi B. Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes[J]. Electrochim. Acta ,2005,51(6):1091-1098. [32] Cho K T,Ridgway P,Weber A Z,Haussener S,Battaglia V,Srinivasan V. High performance hydrogen/bromine redox flow battery for grid-scale energy storage[J]. J. Electrochem. Soc. ,2012,159(11):A1806-A1815. [33] Zito R. Zinc-bromine battery with long term stability:UK,GB,2132004A[P]. 1984-06-27. [34] Cathro K J,Cedzynska K,Constable D C. Preparation and performance of plastic-bonded-carbon bromine electrodes[J]. J. Power Sources ,1987,19(4):337-356. [35] Munaiah Y,Dheenadayalan S,Ragupathy P,Pillai V K. High performance carbon nanotube based electrodes for zinc bromine redox flow batteries[J]. ECS J. Solid State Sci. Technol. ,2013,2(10):M3182-M3186. [36] Lai Q,Zhang H,Li X,Zhang L,Cheng Y. A novel single flow zinc-bromine battery with improved energy density[J]. J. Power Sources ,2013,235:1-4. [37] Rui X,Oo M O,Sim D H,Raghu S C,Yan Q,Lim T M,Skyllas-Kazacos M. Graphene oxide nanosheets/polymer binders as superior electrocatalytic materials for vanadium bromide redox flow batteries[J]. Electrochim. Acta ,2012,85:175-181. [38] Skyllas-Kazacos M,Chakrabarti M H,Hajimolana S A,Mjalli F S,Saleem M. Progress in flow battery research and development[J]. J. Electrochem. Soc. ,2011,158(8):R55. [39] Rychcik M,Skyllas-Kazacos M. Evaluation of electrode materials for vanadium redox cell[J]. J. Power Sources ,1987,19:45-54. [40] Zhong S,Padeste C,Kazacos M,Skyllas-Kazacos M. Comparison of the physical, chemical and electrochemical properties of rayon- and polyacrylonitrile-based graphite felt electrodes[J]. J. Power Sources ,1993,45:29-41. [41] Blasi A D,Blasi O D,Briguglio N,Aricò A S,Sebastián D,Lázaro M J,Monforte G,Antonucci V. Investigation of several graphite-based electrodes for vanadium redox flow cell[J]. J. Power Sources ,2013,227:15-23. [42] Melke J,Jakes P,Langner J,Riekehr L,Kunz U,Zhao-Karger Z,Nefedov A,Sezen H,Wöll C,Ehrenberg H,Roth C. Carbon materials for the positive electrode in all-vanadium redox flow batteries[J]. Carbon ,2014,8:220-230. [43] Schweiss R. Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries[J]. J. Power Sources ,2015,278:308-313. [44] Pour N,Kwabi D G,Carney T J,Darling R M,Perry M L,Shao-Horn Y. Influence of edge- and basal-plane sites on the vanadium redox kinetics for flow batteries[J]. J. Phys. Chem. C ,2015,119(10):5311-5318. [45] Sun B,Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment[J]. Electrochimica Acta ,1992,37(7):1253-1260. [46] Sun B,Skyllas-Kazacos M. Chemical modification of graphite electrode materials for vanadium redox flow battery application. Part II. Acid treatments[J]. Electrochimica Acta ,1992,37(13):2459-2465. [47] Mohammadi F,Timbrellb P,Zhong S,Padestea C. Overcharge in the vanadium redox battery and changes in electrical resistivity and surface functionality of graphite-felt electrodes[J]. J . Power sources , 1994,52(1):61-68. [48] Zhang W,Xi J,Li Z,Zhou H,Liu L,Wu Z,Qiu X. Electrochemical activation of graphite felt electrode for VO 2+ /VO 2 + redox couple application[J]. Electrochim. Acta ,2013,89:429-435. [49] Men Y,Sun T. Carbon felts electrode treated in different weak acid solutions through electrochemical oxidation method for all vanadium redox flow battery[J]. Int. J. Electrochem. Sci. ,2012,7:3482-3488. [50] Lawrence K J,Xiao H. Improved electrode for flow batteries:WO,2014149192[P]. 2014-09-25. [51] Kim K J,Lee S W,Yim T,Kim J G,Choi J W,Kim J H,Park M S,Kim Y J. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries[J]. Sci. Rep. ,2014,4:6906. [52] Kim K J,Kim Y J,Kim J H,Park M S. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries[J]. Mater. Chem. Phys. ,2011,131(1-2):547-553. [53] Hammer E M,Berger B,Komsiyska L. Improvement of the performance of graphite felt electrodes for vanadium-redox-flow-batteries by plasma treatment[J]. Int. J. Renew. Energy Dev. ,2014,3:7-12. [54] Li W W,Chu Y Q,Ma C A. Highly hydroxylated graphite felts used as electrodes for a vanadium redox flow battery[J]. Adv. Mater. Res. ,2014,936:471-475. [55] Skyllas-Kazakos M. All-vanadium redox battery and additives:WO,89/05526[P]. 1989-06-15. [56] Sun B,Skyllas-Kazakos M. Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution[J]. Electrochim. Acta ,1991,36(3):513-517. [57] Wang W H,Wang X D. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery[J]. Electrochim. Acta ,2007,52(24):6755-6762. [58] González Z,Sánchez Z,Blanco C,Granda M,Menéndez R,Santamaría R. Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery[J]. Electrochem. Commun. ,2011,13:1379-1382. [59] Wieckowski A. Interfacial Electrochemistry:Theory, Experiment, and Applications[M]. New York:Marcel Dekker, Inc.,1999. [60] Yao C,Zhang H,Liu T,Li X,Liu Z. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery[J]. J. Power Sources ,2012,218:455-461. [61] Kim H S,Cho B W,Kim Y J,Kim K J. Graphite/DSA assembled electrode for redox flow battery, method of manufacturing the same and redox flow battery including the same:US,8518527[P]. 2011-10-20. [62] Kim K J,Park M S,Kim J H,Hwang U,Lee N J,Jeong G,Kim Y J. Novel catalytic effects of Mn 3 O 4 for all vanadium redox flow batteries[J]. Chem. Commun. ,2012,48(44):5455-5461. [63] Shen Y,Xu H,Xu P,Wu X,Dong Y,Lu L. Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO 2+ /VO 2 + redox reaction[J]. Electrochim. Acta ,2014,132:37-41. [64] Li B,Gu M,Nie Z,Wei X,Wang C,Sprenkle V,Wang W. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery[J]. Nano Lett. ,2014,14:158-165. [65] Wu X,Xu H,Xu P,Shen Y,Lu L,Shi J,Fu J,Zhao H. PbO 2 -modified graphite felt as the positive electrode for an all-vanadium redox flow battery[J]. J. Power Sources ,2014,250:274-278. [66] Zhou H,Xi J,Li Z,Zhang Z,Yu L,Liu L,Qiu X,Chen L. CeO 2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries[J]. RSC Adv. ,2014,4:61912-61918. [67] Radford G J W,Cox J,Wills R G A,Walsh F C. Electrochemical characterisation of activated carbon particles used in redox flow battery electrodes[J]. J. Power Sources ,2008,185:1499-1504. [68] Shao Y,Wang X,Engelhard M,Wang C,Dai S,Liu J,Yang Z,Lin Y. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries[J]. J. Power Sources ,2010,195:4375-4379. [69] Ulaganathan M,Jain A,Aravindan V,Jayaraman S,Ling W C,Lim T M,Srinivasan M P,Yan Q,Madhavi S. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions[J]. J. Power Sources ,2015,274:846-850. [70] Zhu H Q,Zhang Y M,Yue L,Li W S,Li G L,Shu D,Chen H Y. Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery[J]. J. Power Sources ,2008,184(2):637-640. [71] Rui X,Parasuraman A,Liu W,Sim D H,Hng H H,Yan Q,Lim T M,Skyllas-Kazacos M. Functionalized single-walled carbon nanotubes with enhanced electrocatalytic activity for Br - /Br 3 - redox reactions in vanadium bromide redox flow batteries[J]. Carbon ,2013,64:464-471. [72] Li W,Liu J,Yan C. Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO 2+ /VO 2 + for a vanadium redox flow battery[J]. Carbon ,2011,49(11):3463-3470. [73] Manahan M P,Liu Q H,Gross M L,Mench M M. Carbon nanoporous layer for reaction location management and performance enhancement in all-vanadium redox flow batteries[J]. J. Power Sources ,2013,222:498-502. [74] Tsai H M,Yang S Y,Ma C C M,Xie X. Preparation and electrochemical properties of graphene-modified electrodes for all-vanadium redox flow batteries[J]. Electroanalysis ,2011,23(9):2139-2143. [75] Han P,Wang H,Liu Z,Chen X,Ma W,Yao J,Zhu Y,Cui G. Graphene oxide nanoplatelets as excellent electrochemical active materials for VO 2+ /VO 2 + and V 2+ /V 3+ redox couples for a vanadium redox flow battery[J]. Carbon ,2011,49(2):693-700. [76] González Z,Botas C,Álvarez P,Roldán S,Blanco C,Santamaría R,Granda M,Menéndez R. Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries[J]. Carbon ,2012,50:828-834. [77] González Z,Botas C,Blanco C,Santamaría R,Granda M,Álvarez P,Menéndez R. Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries[J]. J. Power Sources ,2013,241:349-354. [78] González Z,Botas C,Blanco C,Santamaría R,Granda M,Álvarez P,Menéndez R. Thermally reduced graphite and graphene oxides in VRFBs[J]. Nano Energy ,2013,2(6):1322-1328. [79] Li W,Liu J,Yan C. Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery[J]. Carbon ,2013,55:313-320. [80] González Z,Vizireanu S,Dinescu G,Blanco C,Santamaría R. Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries[J]. Nano Energy ,2012,1:833-839. [81] Park M,Jeon I Y,Ryu J,Baek J B,Cho J. Exploration of the effective location of surface oxygen defects in graphene-based electrocatalysts for all-vanadium redox-flow batteries[J]. Adv. Energy Mater. ,2015,5(55):doi: 10.1002/aenm. 201401550. [82] Shi L,Liu S,He Z,Shen J. Nitrogen-doped graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery[J]. Electrochim. Acta ,2014,138:93-100. [83] Jin J,Fu X,Liu Q,Liu Y,Wei Z,Niu K,Zhang J. Identifying the active site in nitrogen-doped graphene for the VO 2+ /VO 2 + redox reaction[J]. ACS Nano ,2013,7(6): 4764-4773. [84] Park M,Ryu J,Kim Y,Cho J. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups:A highly efficient electrocatalyst for all-vanadium redox flow batteries[J]. Energy Environ. Sci. ,2014,7:3727-3735. [85] Lee H J,Kim H. Nitrogen-doped carbons as electrode materials for all-vanadium redox flow batteries[C]//The International Flow Battery Forum,2015:88-89. [86] Li W,Liu J,Yan C. Graphite-graphite oxide composite electrode for vanadium redox flow battery[J]. Electrochim. Acta ,2011,56:5290-5294. [87] Han P,Yue Y,Liu Z,Xu W,Zhang L,Xu H,Dong S,Cui G. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO 2+ /VO 2 + redox couples for vanadium redox flow batteries[J]. Energy Environ. Sci. ,2011,4:4710. [88] Flox C,Rubio-Garcia J,Nafria R,Zamani R,Skoumal M,Andreu T,Arbiol J,Cabot A,Morante J R. Active nano-CuPt 3 electrocatalyst supported on graphene for enhancing reactions at the cathode in all-vanadium redox flow batteries[J]. Carbon ,2012,50:2372-2374. [89] Flox C,Skoumal M,Rubio-Garcia J,Andreu T,Morante J R. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries[J]. Appl. Energy ,2013,109:344-351. [90] Han P,Wang X,Zhang L,Wang T,Yao J,Huang C,Gu L,Cui G. RuSe/reduced graphene oxide:An efficient electrocatalyst for VO 2+ /VO 2 + redox couples in vanadium redox flow batteries[J]. RSC Adv. ,2014,4:20379. [91] Vante N A,Jaegermann W,Tributsch H,Hoenle W,Yvon K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters[J]. J. Am. Chem. Soc. ,1987,109(13):3251-3257. [92] Kulesza P J,Miecznikowski K,Baranowska B,Skunik M,Fiechter S,Bogdanoff P,Dorbandt I. Tungsten oxide as active matrix for dispersed carbon-supported RuSex nanoparticles:Enhancement of the electrocatalytic oxygen reduction[J]. Electrochem. Commun. ,2006,8(5):904-908. [93] Tseng T M,Huang R H,Huang C Y,Hsueh K L,Shieu F S. Improvement of titanium dioxide addition on carbon black composite for negative electrode in vanadium redox flow battery[J]. J. Electrochem. Soc. ,2013,160(8):A1269-A1275. [94] Tseng T M,Huang R H,Huang C Y,Liu C C,Hsueh K L,Shieu F S. Carbon felt coated with titanium dioxide/carbon black composite as negative electrode for vanadium redox flow battery[J]. J. Electrochem. Soc. ,2014,161(6):A1132-A1138. [95] Li B,Gu M,Nie Z,Shao Y,Luo Q,Wei X,Li X,Xiao J,Wang C,Sprenkle V,Wang W. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery[J]. Nano Lett. ,2013,13:1330-1335. [96] Shen J,Liu S,He Z,Shi L. Influence of antimony ions in negative electrolyte on the electrochemical performance of vanadium redox flow batteries[J]. Electrochim. Acta ,2015,151:297-305. [97] Skallas-Kazacos M. Stabilized vanadium electrolyte solutions for all-vanadium redox cells and batteries:US,6562514 B1[P]. 2003-05-13. [98] Skyllas-Kazacos M. Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery[J]. Electrochem. Solid-State Lett. ,1999,2(3):121. [99] Li S,Huang K,Liu S,Fang D,Wu X,Lu D,Wu T. Effect of organic additives on positive electrolyte for vanadium redox battery[J]. Electrochim. Acta ,2011,56(16):5483-5487. [100] Wu X,Liu S,Wang N,Peng S,He Z. Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery[J]. Electrochim. Acta ,2012,78:475-482. [101] Wei Z,Liu D,Hsu C,Liu F. All-vanadium redox photoelectrochemical cell:An approach to store solar energy[J]. Electrochem. Commun. ,2014,45:79-82. [102] Liu D,Zi W,Sajjad S D,Hsu C,Shen Y,Wei M,Liu F. Reversible electron storage in an all-vanadium photoelectrochemical storage cell:Synergy between vanadium redox and hybrid photocatalyst[J]. ACS Catal. ,2015,5:2632-2639. [103] Aaron D S,Liu Q,Tang Z,Grim G M,Papandrew A B,Turhan A,Zawodzinski T A,Mench M M. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture[J]. J. Power Sources ,2012,206:450-453. [104] Liu M,Lee K. Electrode structure of vanadium redox flow battery:US,20130022846A1[P]. 2013-01-24. [105] Pelligri A,Spaziante P M. Process and accumulator for storing and releasing electrical energy:UK,GB2030349A[P]. 1978-07-10. [106] Swathirajan S,Mikhail Y M. Membrane-electrode assemblies for electrochemical cells:US,652138[P]. 1993-12-21. [107] Yao C,Zhang H,Liu T,Li X,Liu Z. Cell architecture upswing based on catalyst coated membrane (CCM) for vanadium flow battery[J]. J. Power Sources ,2013,237:19-25. [108] Li W,Liu J. Yan C. The electrochemical catalytic activity of single-walled carbon nanotubes towards VO 2+ /VO 2 + and V 3+ /V 2+ redox pairs for an all vanadium redox flow battery[J]. Electrochimica Acta ,2012,79:102-108. [109] Wei G,Jia C,Liu J,Yan W. Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application[J]. J. Power Sources ,2012,220:185-192. [110] Gonzalez Z,Alvarez P,Blanco C,Vega-Diaz S,Tristan-Lopez F. The influence of carbon nanotubes characteristics in their performance as positive electrodes in vanadium redox flow batteries[J]. Sustainable Energy Technologies and Assessments ,2015,9:105-110. [111] Flox C,Rubio-García J,Skoumal M,Andreu T,Morante J R. Thermo-chemical treatments based on NH 3 /O 2 for improved graphite-based fiber electrodes in vanadium redox flow batteries[J]. Carbon ,2013,60:280-288. [112] Wang S,Zhao X,Thomas C,Manthiram A. Nitrogen-doped carbon nanotube/graphite felt as advanced electrode materials for vanadium redox flow batteries[J]. J. Phy. Chem. Lett. ,2012,3:2164-2167. [113] He Z,Shi L,Shen J,He Z,Liu S. Effects of nitrogen doping on the electrochemical performance of graphite felts for vanadium redox flow batteries[J]. Int. J. Energy Res. ,2015,39:709-716. [114] He Z,Su A,Gao C,Zhou Z,Pan C,Liu S. Carbon paper modified by hydrothermal ammoniated treatment for vanadium redox battery[J]. Ionics ( Kiel .),2013,19:1021-1026. [115] Wu T,Huang K,Liu S,Zhuang S,Fang D,Li S,Lu D,Su A. Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery[J]. J. Solid State Electrochem. ,2012,16:579-585. [116] Park M,Jung Y J,Kim J,Lee H,Cho J. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery[J]. Nano Lett. ,2013,13:4833-4839. [117] Wei G,Fan X,Liu J,Yan C. Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery[J]. J. Power Sources ,2015,281:1-6. [118] Yao C,Zhang H,Liu T,Li X,Liu Z. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery[J]. J. Power Sources ,2012,218:455-461. [119] Skallas-Kazacos M M. Stabilized vanadium electrolyte solutions for all-vanadium redox cells and batteries:US,6562514 B1[P]. 2003-05-13. [120] Kazacos M,Kazacos M S. High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions:US,7078123B2[P]. 2006-07-18. [121] Skyllas-Kazacos M. Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery[J]. Electrochem. Solid-State Lett. ,1999,2:121. [122] Park S K,Shim J,Yang J H,Jin C S,Lee B S,Lee Y S,Shin K H,Jeon J D. The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery[J]. Electrochim. Acta ,2014,116:447-452. [123] Park S K,Shim J,Yang J H,Jin C S,Lee B S,Lee Y S, Shin K H,Jeon J D. The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery[J]. Electrochim. Acta ,2014,116:447-452. [124] Liu Q H,Grim G M,Papandrew B A,Turhan A,Zawodzinski T A,Mench M M. High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection[J]. J. Electrochem. Soc. ,2012,159(8):A1246-A1252. [125] Jafri R I,Rajalakshmi N,Ramaprabhu S. Nitogen doped graphene nanoplates as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell[J]. J. Mat. Chem. ,2010,20:7114-7117. [126] Vante N A,Jaegermann W,Tributsch H,Honle W,Yvon K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters[J]. J. Am. Chem. Soc. ,1987,109:3251-3257. [127] Ye D,Zhan Z. A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells[J]. J. Power Sources ,2013,231:285-292. |
[1] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, (): 1-14. |
[2] | 王鲁, 王峰, 徐竞, 赵延鹏, 李玮, 王艳艳, 王应彪. 基于SOM+SVM的退役锂离子电池分选[J]. 储能科学与技术, 2022, (): 1-9. |
[3] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[4] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[5] | 何凤荣, 张啟文, 郭德超, 郭义敏, 郭孝东. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. |
[6] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[7] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[8] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[9] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[10] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[11] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[12] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[13] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[14] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[15] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||