储能科学与技术 ›› 2015, Vol. 4 ›› Issue (6): 556-568.doi: 10.3969/j.issn.2095-4239.2015.06.003
王昊, 闫勇, 林明翔, 陈彬, 胡飞, 詹元杰, 陈宇阳, 赵俊年, 武怿达, 俞海龙, 刘燕燕, 贲留斌, 黄学杰
收稿日期:
2015-10-18
出版日期:
2015-12-19
发布日期:
2015-12-19
通讯作者:
黄学杰,研究员,E-mail:xjhuang@iphy.ac.cn。
作者简介:
王昊(1990—),男,博士研究生,研究方向为锂离子电池正极材料,E-mail:wanghaoe_mail@163.com;
WANG Hao, YAN Yong, LIN Mingxiang, CHEN Bin, HU Fei, ZHAN Yuanjie, CHEN Yuyang, ZHAO Junnian, WU Yida, YU Hailong, LIU Yanyan, BEN Liubin, HUANG Xuejie
Received:
2015-10-18
Online:
2015-12-19
Published:
2015-12-19
摘要: 该文是一篇近两个月的锂电池文献评述,我们以“lithium”和“batter*”为关键词检索了Web of Science 从2015年8月1日至2015年9月30日上线的锂电池研究论文,共有2432篇,选择其中100篇加以评论。正极材料主要研究了富锂相材料、三元材料和尖晶石材料的掺杂和表面包覆及界面层改进对其循环寿命的影响。高容量的硅、锡基复合负极材料研究侧重于SEI界面层、复合材料、黏线剂及反应机理研究,电解液添加剂、固态电解质、锂空电池、锂硫电池的论文也有多篇。理论模拟工作包括电极材料体相和界面结构以及电解质的输运性质,除了以材料为主的研究之外,针对电池的状态估计、失效分析、热安全分析的研究论文也有多篇。
中图分类号:
王昊, 闫勇, 林明翔, 陈彬, 胡飞, 詹元杰, 陈宇阳, 赵俊年, 武怿达, 俞海龙, 刘燕燕, 贲留斌, 黄学杰. 锂电池百篇论文点评(2015.8.1—2015.9.30)[J]. 储能科学与技术, 2015, 4(6): 556-568.
WANG Hao, YAN Yong, LIN Mingxiang, CHEN Bin, HU Fei, ZHAN Yuanjie, CHEN Yuyang, ZHAO Junnian, WU Yida, YU Hailong, LIU Yanyan, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Aug. 1,2015 to Sept. 30,2015)[J]. Energy Storage Science and Technology, 2015, 4(6): 556-568.
[1] Kikkawa J,Terada S,Gunji A, et al . Chemical states of overcharged LiCoO 2 particle surfaces and interiors observed using electron energy-loss spectroscopy[J] . Journal of Physical Chemistry C ,2015,119(28):15823-15830. [2] Robertz R,Novak P. Structural changes and microstrain generated on LiNi 0.80 Co 0.15 Al 0.05 O 2 during cycling:Effects on the electrochemical performance[J] . Journal of the Electrochemical Society ,2015,162(9):A1823-A1828. [3] Wolff-Goodrich S,Lin F,Markus I M, et al . Tailoring the surface properties of LiNi 0.4 Mn 0.4 Co 0.2 O 2 by titanium substitution for improved high voltage cycling performance[J] . Physical Chemistry Chemical Physics ,2015,17(34):21778-21781. [4] Yang S,Yan B,Li T, et al . In situ studies of lithium-ion diffusion in a lithium-rich thin film cathode by scanning probe microscopy techniques[J] . Physical Chemistry Chemical Physics ,2015,17(34):22235-22242. [5] Biao L,Huijun Y,Jin M, et al . Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions:Towards better electrochemical performance[J] . Advanced Functional Materials ,2014,24(32):5112-5118. [6] Lim B B,Yoon S J,Park K J, et al . Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J] . Advanced Functional Materials ,2015,25(29):4673-4680. [7] Liu W,Oh P,Liu X, et al . Countering voltage decay and capacity fading of lithium-rich cathode material at 60 degrees C by hybrid surface protection layers[J] . Advanced Energy Materials ,2015,5(13):doi:10.1002/aenm.201500274. [8] Yu Z,Shang S L,Gordin M L, et al . Ti-substituted Li Li 0.26 Mn 0.6 Ti x Ni 0.07 Co 0.07 O 2 layered cathode material with improved structural stability and suppressed voltage fading[J] . Journal of Materials Chemistry A ,2015,3(33):17376-17384. [9] Devaraj A,Gu M,Colby R, et al . Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes[J] . Nature Communications ,2015,6(8014):doi:10.1038/ncomms9014. [10] Nayak P K,Grinblat J,Levi M, et al . Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries[J] . Journal of Solid State Electrochemistry ,2015,19(9):2781-2792. [11] Wise A M,Ban C,Weker J N, et al . Effect of Al 2 O 3 coating on stabilizing LiNi 0.4 Mn 0.4 Co 0.2 O 2 cathodes[J] . Chemistry of Materials ,2015,27(17):6146-6154. [12] Yan P,Zheng J,Lv D, et al . Atomic-resolution visualization of distinctive chemical mixing behavior of Ni, Co, and Mn with Li in layered lithium transition-metal oxide cathode materials[J] . Chemistry of Materials ,2015,27(15):5393-5401. [13] Jaber-Ansari L,Puntambekar K P,Kim S, et al . Suppressing manganese dissolution from lithium manganese oxide spinel cathodes with single-layer graphene[J] . Advanced Energy Materials ,2015,5(17):doi:10.1002/aenm.201500646. [14] Jeong M,Lee M J,Cho J, et al . Surface Mn oxidation state controlled spinel LiMn 2 O 4 as a cathode material for high-energy Li-ion batteries[J] . Advanced Energy Materials ,2015,5(13):doi:10.1002/aenm.201500440. [15] Guo L,Zhang Y,Wang J, et al . Unlocking the energy capabilities of micron-sized LiFePO 4 [J] . Nature Communications ,2015,6:doi:10.1038/ncomms8898. [16] Yu D Y W,Zhao M,Hoster H E. Suppressing vertical displacement of lithiated silicon particles in high volumetric capacity battery electrodes[J] . Chemelectrochem ,2015,2(8):1090-1095. [17] Jaumann T,Balach J,Klose M, et al . SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries:The role of electrode preparation, FEC addition and binders[J] . Physical Chemistry Chemical Physics ,2015,17(38):24956-24967. [18] Van Havenbergh K,Turner S,Driesen K, et al . Solid-electrolyte interphase evolution of carbon-coated silicon nanoparticles for lithium-ion batteries monitored by transmission electron microscopy and impedance spectroscopy[J] . Energy Technology ,2015,3(7):699-708. [19] Jeong J,Reece M J,Pyo M. Improved lithium-storage capability and cyclability of tin dioxide confined in highly crosslinked graphene framework[J] . Journal of the Electrochemical Society ,2015,162(9):A1702-A1707. [20] Nordh T,Younesi R,Brandell D, et al . Depth profiling the solid electrolyte interpahase on lithium titanate (Li 4 Ti 5 O 12 ) using synchrotron-based photoelectron spectroscopy[J] . Journal of Power Sources ,2015,294:173-179. [21] Maruyama H,Nakano H,Ogawa M, et al . Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes[J] . Scientific Reports ,2015,5:doi:10.1038/srep13219. [22] Junjun W,Hyea K,Dong-Chan L, et al . Influence of annealing on ionic transfer and storage stability of Li 2 S-P 2 S 5 solid electrolyte[J] . Journal of Power Sources ,2015,294:494-500. [23] Devaux D,Gle D,Phan T N T, et al . Optimization of block copolymer electrolytes for lithium metal batteries[J] . Chemistry of Materials ,2015,27(13):4682-4692. [24] Zhang H,Han H,Cheng X, et al . Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells:Physicochemical and electrochemical properties[J] . Journal of Power Sources ,2015,296:142-149. [25] Khasanov M,Pazhetnov E,Shin W C. Dicarboxylate-substituted ethylene carbonate as an sei-forming additive for lithium-ion batteries[J] . Journal of the Electrochemical Society ,2015,162(9):A1892-A1898. [26] Chen J,Gao Y,Li C, et al . Interface modification in high voltage spinel lithium-ion battery by using N -methylpyrrole as an electrolyte additive[J] . Electrochimica Acta ,2015,178:127-133. [27] Huang W,Xing L,Zhang R, et al . A novel electrolyte additive for improving the interfacial stability of high voltage lithium nickel manganese oxide cathode[J] . Journal of Power Sources ,2015,293:71-77. [28] Shin H,Park J,Sastry A M, et al . Effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures[J] . Journal of the Electrochemical Society ,2015,162(9):A1683- A1692. [29] Luo R,Xu D,Zeng X, et al . Enhancing the cycling stability of a carbonate-based electrolyte for high-voltage lithium batteries by adding succinic anhydride[J] . Ionics ,2015,21(9):2535-2542. [30] Pires J,Castets A,Timperman L, et al . Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J] . Journal of Power Sources ,2015,296:413-425. [31] Bernhard R,Metzger M,Gasteiger H A. Gas evolution at graphite anodes depending on electrolyte water content and SEI quality studied by on-line electrochemical mass spectrometry[J] . Journal of the Electrochemical Society ,2015,162(10):A1984-A1989. [32] Togasaki N,Momma T,Osaka T. Role of the solid electrolyte interphase on a Li metal anode in a dimethylsulfoxide-based electrolyte for a lithium-oxygen battery[J] . Journal of Power Sources ,2015,294:588-592. [33] Garcia J M,Horn H W,Rice J E. Dominant decomposition pathways for ethereal solvents in LiO 2 batteries[J] . Journal of Physical Chemistry Letters ,2015,6(10):1795-1799. [34] Huang J,Faghri A. Capacity enhancement of a lithium oxygen flow battery[J] . Electrochimica Acta ,2015,174:908-918. [35] Suzuki Y,Kami K,Watanabe K, et al . Characteristics of discharge products in all-solid-state Li-air batteries[J] . Solid State Ionics ,2015,278:222-227. [36] Liu Q C,Xu J J,Xu D, et al . Flexible lithium-oxygen battery based on a recoverable cathode[J] . Nature Communications ,2015,6:7892-7892. [37] Zhou G,Paek E,Hwang G S, et al . Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J] . Nature Communications ,2015,6(7760):doi:10.1038/ ncomms8760. [38] Yu X,Joseph J,Manthiram A. Polymer lithium-sulfur batteries with a Nafion membrane and an advanced sulfur electrode[J] . Journal of Materials Chemistry A ,2015,3(30):15683-15691. [39] Yan J,Liu X,Yao M, et al . Long-life, high-efficiency lithium-sulfur battery from a nanoassembled cathode[J] . Chemistry of Materials ,2015,27(14):5080-5087. [40] Takeuchi T,Kageyama H,Nakanishi K, et al . Preparation of Li 2 S-FeS x composite positive electrode materials and their electrochemical properties with pre-cycling treatments[J] . Journal of the Electrochemical Society ,2015,162(9):A1745-A1750. [41] Song M K,Zhang Y,Cairns E J. Effects of cell construction parameters on the performance of lithium/sulfur cells[J] . AIChE Journal ,2015,61(9):2749-2756. [42] Kim J H,Kim T,Jeong Y C, et al . Stabilization of insoluble discharge products by facile aniline modification for high performance Li-S batteries[J] . Advanced Energy Materials ,2015,5(14):doi:10.1002/aenm.201500268. [43] Park K,Cho J H,Jang J H, et al . Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix[J] . Energy & Environmental Science ,2015,8(8):2389-2395. [44] Hyungjun N,Jongchan S,Jung-Ki P, et al . A new insight on capacity fading of lithium-sulfur batteries:The effect of Li 2 S phase structure[J] . Journal of Power Sources ,2015,293:329-335. [45] Jha H,Buchberger I,Cui X, et al . Li-S batteries with Li 2 S cathodes and Si/C anodes[J] . Journal of the Electrochemical Society ,2015,162(9):A1829-A1835. [46] Joo-Seong K,Tae Hoon H,Byung Gon K, et al . A lithium-sulfur battery with a high areal energy density[J] . Advanced Functional Materials ,2014,24(34):5359-5367. [47] Barghamadi M,Best A S,Bhatt A I, et al . Effect of LiNO 3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium sulfur battery[J] . Journal of Power Sources ,2015,295:212-220. [48] Chen H,Wang C,Dai Y, et al . Rational design of cathode structure for high rate performance lithium-sulfur batteries[J] . Nano Letters ,2015,15(8):5443-5448. [49] Hakari T,Nagao M,Hayashi A, et al . All-solid-state lithium batteries with Li 3 PS 4 glass as active material[J] . Journal of Power Sources ,2015,293:721-725. [50] Cuisinier M,Hart C,Balasubramanian M, et al . Radical or not radical:Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes[J] . Advanced Energy Materials ,2015,5(16):doi:10.1002/aenm.201401801. [51] Li Z,Zhang S,Zhang C, et al . One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: In situ formed Li 2 S/graphene composite for lithium-sulfur batteries[J] . Nanoscale ,2015,7(34):14385-14392. [52] Lv D,Yan P,Shao Y, et al . High performance Li-ion sulfur batteries enabled by intercalation chemistry[J] . Chemical Communications ,2015,51(70):13454-13457. [53] Agostini M,Scrosati B,Hassoun J. An advanced lithium-ion sulfur battery for high energy storage[J] . Advanced Energy Materials ,2015,5(16):doi:10.1002/aenm.201500481. [54] Balach J,Jaumann T,Klose M, et al . Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J] . Advanced Functional Materials ,2015,25(33):5285-5291. [55] Fan F Y,Carter W C,Chiang Y M. Mechanism and kinetics of Li 2 S precipitation in lithium-sulfur batteries[J] . Advanced Materials ( Deerfield Beach , Fla. ),2015,27(35):5203-5209. [56] Al Salem H,Babu G,Rao C V, et al . Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J] . Journal of the American Chemical Society ,2015,137(36):11542-11545. [57] Zu C,Azimi N,Zhang Z, et al . Insight into lithium-metal anodes in lithium-sulfur batteries with a fluorinated ether electrolyte[J] . Journal of Materials Chemistry A ,2015,3(28):14864-14870. [58] Hagen M,Hanselmann D,Ahlbrecht K, et al . Lithium-sulfur cells:The gap between the state-of-the-art and the requirements for high energy battery cells[J] . Advanced Energy Materials ,2015,5(16):doi:10.1002/aenm.201401986. [59] Yamada I,Miyazaki K,Fukutsuka T, et al . Lithium-ion transfer at the interfaces between LiCoO 2 and LiMn 2 O 4 thin film electrodes and organic electrolytes[J] . Journal of Power Sources ,2015,294:460-464. [60] Hu X,Chen C,Yan J, et al . Electrochemical and in - situ scanning tunneling microscopy studies of bis(fluorosulfonyl)imide and bis(trifluoromethanesulfonyl) imide based ionic liquids on graphite and gold electrodes and lithium salt influence[J] . Journal of Power Sources ,2015,293:187-195. [61] Lahiri A,Carstens T,Atkin R, et al . In situ atomic force microscopic studies of the interfacial multilayer nanostructure of LiTFSI- Py-1,Py- 4 TFSI on Au(111):Influence of Li + concentration on the Au(111)/IL interface[J] . Journal of Physical Chemistry C ,2015,119(29):16734-16742. [62] Buchner F,Bozorgchenani M,Uhl B, et al . Reactive interaction of (sub-)monolayers and multi layers of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoro-methylsulfonyl)imide with Co adsorbed lithium on Cu(111)[J] . Journal of Physical Chemistry C ,2015,119(29):16649-16659. [63] Bizeray A M,Zhao S,Duncan S R, et al . Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter[J] . Journal of Power Sources ,2015,296:400-412. [64] Feng X,He X,Ouyang M, et al . Thermal runaway propagation model for designing a safer battery pack with 25 A·h LiNi x Co y Mn z O 2 large format lithium ion battery[J] . Applied Energy ,2015,154:74-91. [65] Ahmed R,El Sayed M,Arasaratnam I, et al . Reduced-order electrochemical model parameters identification and SOC estimation for healthy and aged Li-ion batteries. Part I:Parameterization model development for healthy batteries[J] . IEEE Journal of Emerging and Selected Topics in Power Electronics ,2014,2(3):659-677. [66] Ahmed R,El Sayed M,Arasaratnam I, et al . Reduced-order electrochemical model parameters identification and state of charge estimation for healthy and aged Li-ion batteries. Part II:Aged battery model and state of charge estimation[J] . IEEE Journal of Emerging and Selected Topics in Power Electronics ,2014,2(3):678-690. [67] Dai H,Zhu L,Zhu J, et al . Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries[J] . Journal of Power Sources ,2015,293:351-365. [68] Fell C R,Sun L,Hallac P B, et al . Investigation of the gas generation in lithium titanate anode based lithium ion batteries[J] . Journal of the Electrochemical Society ,2015,162(9):A1916-A1920. [69] Jie Q,Dandan H,Mingzhai S, et al . Effects of neutron and gamma radiation on lithium-ion batteries[J] . Nuclear Instruments and Methods in Physics Research , Section B ( Beam Interactions with Materials and Atoms ),2015,345:27-32. [70] Xiaoyu Z,Verhallen T W,Labohm F, et al . Direct observation of Li-ion transport in electrodes under nonequilibrium conditions using neutron depth profiling[J] . Advanced Energy Materials ,2015,5(15):doi:10.1002/aenm.201500498. [71] Barai P,Smith K,Chen C F, et al . Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes[J] . Journal of the Electrochemical Society ,2015,162(9):A1751-A1771. [72] Barcellona S,Brenna M,Foiadelli F, et al . Analysis of ageing effect on Li-polymer batteries[J] . The Scientific World Journal ,2015,doi:http://dx.doi.org/10.1155/2015/979321. [73] Chan H L,Sang June B,Minyoung J. A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation[J] . Journal of Power Sources ,2015,293:498-510. [74] Ecker M,Kaebitz S,Laresgoiti I, et al . Parameterization of a physico-chemical model of a lithium-ion battery II. Model validation[J] . Journal of the Electrochemical Society ,2015,162(9):A1849-A1857. [75] Ecker M,Tran T K D,Dechent P, et al . Parameterization of a physico-chemical model of a lithium-ion battery I. Determination of parameters[J] . Journal of the Electrochemical Society ,2015,162(9):A1836-A1848. [76] Lopez C F,Jeevarajan J A,Mukherjee P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules[J] . Journal of the Electrochemical Society ,2015,162(9):A1905-A1915. [77] Marcicki J,Yang X G,Rairigh P. Fault current measurements during crush testing of electrically parallel lithium-ion battery modules[J] . ECS Electrochemistry Letters ,2015,4(9):A97-A99. [78] Schwoebel A,Hausbrand R,Jaegermann W. Interface reactions between LiPON and lithium studied by in - situ X-ray photoemission[J] . Solid State Ionics ,2015,273:51-54. [79] Ghanbari N,Waldmann T,Kasper M, et al . Detection of Li deposition by glow discharge optical emission spectroscopy in post-mortem analysis[J] . ECS Electrochemistry Letters ,2015,4(9):A100-A102. [80] Chang H J,Trease N M,Ilott A J, et al . Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6 Li/ 7 Li NMR and SEM[J] . Journal of Physical Chemistry C ,2015,119(29):16443-16451. [81] Goutam S,Timmermans J M,Omar N, et al . Comparative study of surface temperature behavior of commercial Li-ion pouch cells of different chemistries and capacities by infrared thermography[J] . Energies ,2015,8(8):8175-8192. [82] Sommer L W,Kiesel P,Ganguli A, et al . Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J] . Journal of Power Sources ,2015,296:46-52. [83] Huang J,Ge H,Li Z, et al . Dynamic electrochemical impedance spectroscopy of a three-electrode lithium-ion battery during pulse charge and discharge[J] . Electrochimica Acta ,2015,176:311-320. [84] Allcorn E,Manthiram A. Thermal stability of Sb and Cu 2 Sb anodes in lithium-ion batteries[J] . Journal of the Electrochemical Society ,2015,162(9):A1778-A1786. [85] Barai A,Widanage W D,Marco J, et al . A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells[J] . Journal of Power Sources ,2015,295:99-107. [86] Gorse S,Kugler B,Samtleben T, et al . An explanation of the ageing mechanism of Li-ion batteries by metallographic and material analysis[J] . Praktische Metallographie-Practical Metallography ,2014,51(12):829-848. [87] Yong L,Jie Y,Jian S. Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles[J] . Renewable & Sustainable Energy Reviews ,2015,50:1445-1461. [88] Lopez C F,Jeevarajan J A,Mukherjee P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J] . Journal of the Electrochemical Society ,2015,162(10):A2163-A2173. [89] Zhu Z,Zhou Y,Yan P, et al . In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries[J] . Nano Letters ,2015,15(9):6170-6176. [90] Guan P,Liu L,Lin X. Simulation and experiment on solid electrolyte interphase (SEI) morphology evolution and lithium-ion diffusion[J] . Journal of the Electrochemical Society ,2015,162(9):A1798-A1808. [91] Wei Y,Zheng J,Cui S, et al . Kinetics tuning of Li-ion diffusion in layered Li(Ni x Mn y Co z )O 2 [J] . Journal of the American Chemical Society ,2015,137(26):8364-8367. [92] Husch T,Korth M. How to estimate solid-electrolyte-interphase features when screening electrolyte materials[J] . Phys. Chem. Chem. Phys. ,2015,17(35):22799-22808. [93] Kim S,Aykol M,Wolverton C. Surface phase diagram and stability of (001) and (111) LiMn 2 O 4 spinel oxides[J] . Physical Review B ,2015,92(11):doi:http://dx.doi.org/10.1103/PhysRevB.92.115411. [94] Seymour I D,Chakraborty S,Middlemiss D S, et al . Mapping structural changes in electrode materials:Application of the hybrid eigenvector-following density functional theory (DFT) method to layered Li 0.5 MnO 2 [J] . Chemistry of Materials ,2015,27(16):5550-5561. [95] Timoshevskii V,Feng Z,Bevan K H, et al . Emergence of metallic properties at LiFePO 4 surfaces and LiFePO 4 /Li 2 S interfaces:An Ab initio study[J] . ACS Applied Materials & Interfaces ,2015,7(33):18362-18368. [96] Xu S,Jacobs R M,Nguyen H M, et al . Lithium transport through lithium-ion battery cathode coatings[J] . Journal of Materials Chemistry A ,2015,3(33):17248-17272. [97] Wang Y,Richards W D,Ong S P, et al . Design principles for solid-state lithium superionic conductors[J] . Nature Materials ,2015,14(10):1026-1031. [98] Joshi R P,Ozdemir B,Barone V, et al . Hexagonal BC 3 :A robust electrode material for Li, Na, and K ion batteries[J] . Journal of Physical Chemistry Letters ,2015,6(14):2728-2732. [99] Croy J R,Iddir H,Gallagher K, et al . First-charge instabilities of layered-layered lithium-ion-battery materials[J] . Physical Chemistry Chemical Physics ,2015,17(37):24382-24391. [100] Unemoto A,Ikeshoji T,Yasaku S, et al . Stable interface formation between TiS 2 and LiBH 4 in Bulk-Type all-solid-state lithium batteries[J] . Chemistry of Materials ,2015,27(15):5407-5416. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||