储能科学与技术 ›› 2016, Vol. 5 ›› Issue (1): 18-30.doi: 10.3969/j.issn.2095-4239.2016.01.003
陈彬, 王昊, 闫勇, 林明翔, 胡飞, 詹元杰, 陈宇阳, 赵俊年, 武怿达, 俞海龙, 刘燕燕, 贲留斌, 黄学杰
收稿日期:
2015-12-18
出版日期:
2016-01-01
发布日期:
2016-01-01
作者简介:
陈彬(1989—),男,博士研究生,研究方向为锂离子电池正极材料,E-mail:chenbin20081552@163.com;通讯联系人:黄学杰,研究员,E-mail:xjhuang@iphy.ac.cn。
CHEN Bin, WANG Hao, YAN Yong, LIN Mingxiang, HU Fei, ZHAN Yuanjie, CHEN Yuyang, ZHAO Junnian, WU Yida, YU Hailong, LIU Yanyan, BEN Liubin, HUANG Xuejie
Received:
2015-12-18
Online:
2016-01-01
Published:
2016-01-01
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2015年10月1日至2015年11月30日上线的锂电池研究论文,共有2318篇,选择其中100篇加以评论。正极材料主要研究了富锂相材料、三元材料和尖晶石材料的掺杂和表面包覆及界面层改进对其循环寿命的影响。高容量的硅、锡基复合负极材料研究侧重于SEI界面层、复合材料、黏结剂及反应机理研究,电解液添加剂、固态电解质、锂空电池、锂硫电池的论文也有多篇。理论模拟工作包括电极材料体相、界面结构以及电解质的输运性质。除了以材料为主的研究之外,针对电池的状态估计、失效分析、热安全分析的研究论文也有多篇。
中图分类号:
陈彬, 王昊, 闫勇, 林明翔, 胡飞, 詹元杰, 陈宇阳, 赵俊年, 武怿达, 俞海龙, 刘燕燕, 贲留斌, 黄学杰. 锂电池百篇论文点评(2015.10.1—2015.11.30)[J]. 储能科学与技术, 2016, 5(1): 18-30.
CHEN Bin, WANG Hao, YAN Yong, LIN Mingxiang, HU Fei, ZHAN Yuanjie, CHEN Yuyang, ZHAO Junnian, WU Yida, YU Hailong, LIU Yanyan, BEN Liubin, HUANG Xuejie. Reviews of selected 100recent papers for lithium batteries (Oct. 1, 2015 to Nov. 30, 2015)[J]. Energy Storage Science and Technology, 2016, 5(1): 18-30.
[1] Yano A,Aoyama S,Shikano M, et al . Surface structure and high-voltage charge/discharge characteristics of Al-oxide coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathodes[J]. Journal of the Electrochemical Society ,2015,162(2):A3137-A3144. [2] Nayak P K,Grinblat J,Levi M, et al . Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries[J]. Journal of Solid State Electrochemistry ,2015,19(9):2781-2792. [3] Konishi h,Hirano T,Takamatsu D, et al . Origin of hysteresis between charge and discharge processes in lithium-rich layer- structured cathode material for lithium-ion battery[J]. Journal of Power Sources ,2015,298:144-153. [4] Knight J C,Manthiram A. Effect of nickel oxidation state on the structural and electrochemical characteristics of lithium-rich layered oxide cathodes[J]. Journal of Materials Chemistry A ,2015,3(44):22199-22207. [5] Kaneko M,Sugimoto T,Takahashi N, et al . Improvement of high voltage cyclic performance by novel binder for high energy lithium ion battery application[C]//Fergus J W. 17th International Meeting on Lithium Batteries. 2014:35-43. [6] Dupre N,Cuisinier M,Legall E, et al . Contribution of the oxygen extracted from overlithiated layered oxides at high potential to the formation of the interphase[J]. Journal of Power Sources ,2015,299:231-240. [7] Choi M H,Yoon C S,Myung S T, et al . Effect of lithium in transition metal layers of Ni-rich cathode materials on electrochemical properties[J]. Journal of the Electrochemical Society ,2015,162(12):A2313-A2321. [8] Kleiner K,Melke J,Merz M, et al . Unraveling the degradation process of LiNi 0.8 Co 0.15 Al 0.05 O 2 electrodes in commercial lithium ion batteries by electronic structure investigations[J]. ACS Applied Materials & Interfaces ,2015,7(35):19589-19600. [9] Kajiyama A,Masaki R,Wakiyama T, et al . Principal factors of carbon conductive agents that contribute to the gas formation in high-voltage cathode systems[J]. Journal of the Electrochemical Society ,2015,162(8):A1516-A1522. [10] Kuppan S,Duncan H,Chen G. Controlling side reactions and self-discharge in high-voltage spinel cathodes:The critical role of surface crystallographic facets[J]. Physical Chemistry Chemical Physics ,2015,17(39):26471-26481. [11] Komatsu H,Arai H,Koyama Y, et al . Solid solution domains at phase transition front of Li x Ni 0.5 Mn 1.5 O 4 [J]. Advanced Energy Materials ,2015,5(17):doi:10.1002/aenm.201500638. [12] Chou W Y,Jin Y C,Duh J G, et al . A facile approach to derive binder protective film on high voltage spinel cathode materials against high temperature degradation [J]. Applied Surface Science ,2015,355:1272-1280. [13] Hatta N,Yoshida Y,Tomita H. High power LiMnPO 4 cathode coated with hybrid layer of Li-ion conductive phosphate and electro- conductive carbon [J]. Journal of the Electrochemical Society ,2015,162(8):A1556-A1565. [14] Manzi J,Vitucci F M,Paolone A, et al . Analysis of the self-discharge process in LiCoPO 4 electrodes:Bulks[J]. Electrochimica Acta ,2015,179:604-614. [15] Hanafusa R,Oka Y,Nakamura T. Electrochemical and magnetic studies of Li-deficient Li (1- x ) Co (1- x ) FexPO 4 olivine cathode compounds[J]. Journal of the Electrochemical Society ,2015,162(2):A3045-A3051. [16] Hwang C,Joo S,Kang N R, et al. Breathing silicon anodes for durable high-power operations[J]. Scientific Reports ,2015,5:doi:10.1038/srep14433. [17] Jaumann T,Balach J,Klose M, et al . SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries:The role of electrode preparation,FEC addition and binders[J]. Physical Chemistry Chemical Physics ,2015,17(38):24956-24967. [18] Lu X,Bogart T D,Gu M, et al . In situ TEM observations of Sn-containing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics[J]. Journal of Physical Chemistry C ,2015,119(38):21889-21895. [19] Touidjine A,Morcrette M,Courty M, et al . Partially oxidized silicon particles for stable aqueous slurries and practical large-scale making of Si-based electrodes[J]. Journal of the Electrochemical Society ,2015,162(8):A1466-A1475. [20] Westover A S,Freudiger D,Gani Z S, et al . On-chip high power porous silicon lithium ion batteries with stable capacity over 10000 cycles[J]. Nanoscale ,2015,7(1):98-103. [21] Zhao X,Dunlap R A,Obrovac M N. Low surface area Si alloy/ionomer composite anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2014,161(14):A1976-A1980. [22] Veith G M,Doucet M,Baldwin J K, et al . Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode[J]. Journal of Physical Chemistry C ,2015,119(35):20339-20349. [23] Park S H,Ahn D,Choi Y M, et al. High-coulombic-efficiency Si-based hybrid microspheres synthesized by the combination of graphene and IL-derived carbon[J]. Journal of Materials Chemistry A ,2015,3(42):20935-20943. [24] Yoshida S,Masuo Y,Shibata D, et al . Li pre-doping of amorphous silicon electrode in Li-Na phthalene complex solutions[J]. Electro chemistry ,2015,83(10):843-848. [25] Xiao Q,Gu M,Yang H, et al . Inward lithium-ion breathing of hierarchically porous silicon anodes[J]. Nature Communications ,2015,6(8844):doi:10.1038/ncomms9844. [26] Tabuchi H,Urita K,Moriguchi I. Effect of carbon nanospace on charge discharge properties of Si and SiO x , nanoparticles-embedded nanoporous carbons[J]. Bulletin of the Chemical Society of Japan ,2015,88(10):1378-1384. [27] Zhang J,Zhang C,Wu S, et al . High-columbic-efficiency lithium battery based on silicon particle materials[J]. Nanoscale Research Letters ,2015,10:doi:10.1186/s 11671-015-1103-0. [28] Hassan F M,Batmaz R,Li J D, et al . Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries[J]. Nature Communications ,2015,6(8597):doi:10.1038/ncomms9597. [29] Luo L,Zhao P,Yang H, et al. Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries[J]. Nano Letters ,2015,15(10):7016-7022. [30] Wang X,Fan F,Wang J, et al . High damage tolerance of electrochemically lithiated silicon[J]. Nature Communications ,2015,6(8417):doi:10.1038/ncomms9417. [31] Hwang C,Cho Y G,Kang N R, et al . Selectively accelerated lithium ion transport to silicon anodes via an organogel binder[J]. Journal of Power Sources ,2015,298:8-13. [32] Morimoto H,Higuchi D,Tobishima S I. Characteristics of high-capacity SiO-C anodes containing olivine-type LiMgPO 4 compounds for lithium secondary batteries[J]. Electrochemistry ,2015,83(10):813-816. [33] Chen Q,Geng K,Sieradzki K. Prospects for dendrite-free cycling of Li metal batteries[J]. Journal of the Electrochemical Society ,2015,162(10):A2004-A2007. [34] Kazyak E,Wood K N,Dasgupta N P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments[J]. Chemistry of Materials ,2015,27(18):6457-6462. [35] Schauser N S,Harry K J,Parkinson D Y, et al . Lithium dendrite growth in glassy and rubbery nanostructured block copolymer electrolytes[J]. Journal of the Electrochemical Society ,2015,162(3):A398-A405. [36] Song J,Lee H,Choo M J, et al . Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes[J]. Scientific Reports ,2015,5:doi:10.1038/srep14458. [37] Le Cras F,Pecquenard B,Dubois V, et al. All-solid-state lithium-ion microbatteries using silicon nanofilm anodes:High performance and memory effect[J]. Advanced Energy Materials ,2015,5(19):1061. [38] Woo J H,Travis J J,George S M, et al . Utilization of Al 2 O 3 atomic layer deposition for Li ion pathways in solid state Li batteries[J]. Journal of the Electrochemical Society ,2015,162(3):A344-A353. [39] Mindemark J,Sun B,Torma E, et al . High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature [J]. Journal of Power Sources ,2015,298:166-170. [40] Schwoebel A,Hausbrand R,Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission[J]. Solid State Ionics ,2015,273:51-55. [41] Xie J,Oudenhoven J F M,Harks PP R M L, et al . Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society ,2015,162(3):A249-A254. [42] Nisula M,Shindo Y,Koga H, et al . Atomic layer deposition of lithium phosphorus oxynitride [J]. Chemistry of Materials ,2015,27(20):6987-6993. [43] Chen Y,Rangasamy E,Dela Cruz C R, et al . A study of suppressed formation of low-conductivity phases in doped Li 7 La 3 Zr 2 O 12 garnets by in situ neutron diffraction[J]. Journal of Materials Chemistry A ,2015,3(45):22868-22876. [44] Yada C,Lee C E,Laughman D, et al . A high-throughput approach developing lithium-niobium-tantalum oxides as electrolyte/cathode interlayers for high-voltage all-solid-state lithium batteries[J]. Journal of the Electrochemical Society ,2015,162(4):A722-A728. [45] Pan Q,Smith D M,Qi H, et al . Hybrid electrolytes with controlled network structures for lithium metal batteries[J]. Advanced Materials ,2015,27(39):5995-6001. [46] Rohan R,Pareek K,Chen Z, et al . A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries[J]. Journal of Materials Chemistry A ,2015,3(40):20267-20276. [47] Chen J,Gao Y,Li C, et al . Interface modification in high voltage spinel lithium-ion battery by using N -methylpyrrole as an electrolyte additive[J]. Electrochimica Acta ,2015,178:127-133. [48] Hieu Quang P,Nam K M,Hwang E H,et al. Performance enhancement of 4.8 V Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2 battery cathode using fluorinated linear carbonate as a high-voltage additive[J]. Journal of the Electrochemical Society ,2014,161(14):A2002-A2011. [49] Zhang H,Han H,Cheng X, et al . Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells:Physicochemical and electrochemical properties [J]. Journal of Power Sources ,2015,296:142-151. [50] Madec L,Petibon R,Tasaki K, et al . Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi 1/3 Mn 1/3 Co 1/3 O 2 /graphite pouch cells:Electrochemical,GC-MS and XPS analysis[J]. Physical Chemistry Chemical Physics ,2015,17(40):27062-27076. [51] Ui K,Karouji T,Towada J, et al . Analysis of surface deposit formed on the natural graphite negative electrode in N , N -diethyl- N - methyl- N -(2-methoxyethyl) ammonium bis(trifluoromethylsulfonyl) amide containing lithium ion [C]//Fergus J W. 17th International Meeting on Lithium Batteries. 2014:273-280. [52] Xue K H,Mcturk E,Johnson L, et al . A comprehensive model for non-aqueous lithium air batteries involving different reaction mechanisms[J]. Journal of the Electrochemical Society ,2015,162(4):A614-A621. [53] Liu T,Leskes M,Yu W, et al . Cycling LiO 2 batteries via LiOH formation and decomposition[J]. Science ,2015,350(6260):530-533. [54] Wu F,Lee J T,Fan F, et al. Lithium sulfide cathodes:A hierarchical particle-shell architecture for long-term cycle stability of Li 2 S cathodes[J]. Advanced Materials (Deerfield Beach, Fla),2015,27(37):5578-. [55] Fan F Y,Carter W C,Chiang Y M. Mechanism and kinetics of Li 2 S precipitation in lithium-sulfur batteries[J]. Advanced Materials ,2015,27(35):5203-5212. [56] Koh J Y,Park M S,Kim E H, et al . Understanding of electrochemical oxidation route of electrically isolated Li 2 S particles[J]. Journal of the Electrochemical Society ,2014,161(14):A2133-A2140. [57] Koh J Y,Park M-S,Kim E H, et al . Electrochemical reduction mechanism of sulfur particles electrically isolated from carbon cathodes of lithium-sulfur cells[J]. Journal of the Electrochemical Society ,2014,161(14):A2117-A2120. [58] Moreno N,Agostini M,Caballero A, et al . A long-life lithium ion sulfur battery exploiting high performance electrodes[J]. Chemical Communications ,2015,51(77):14540-14542. [59] Rosenman A,Elazari R,Salitra G, et al . The effect of interactions and reduction products of LiNO 3 , the anti-shuttle agent,in LiS battery systems[J]. Journal of the Electrochemical Society ,2015,162(3):A470-A473. [60] Wang L,Wang Y,Xia Y. A high performance lithium-ion sulfur battery based on a Li 2 S cathode using a dual-phase electrolyte[J]. Energy & Environmental Science ,2015,8(5):1551-1559. [61] Wei S,Ma L,Hendrickson K E, et al . Metal-sulfur battery cathodes based on PAN sulfur composites[J]. Journal of the American Chemical Society ,2015,137(37):12143-12152. [62] Wu F,Lee J T,Fan F, et al . A hierarchical particle-shell architecture for long-term cycle stability of Li 2 S cathodes[J]. Advanced Materials ,2015,27(37):5579-5586. [63] Wu F,Ye Y,Chen R, et al . Systematic effect for an ultralong cycle lithium-sulfur battery[J]. Nano letters ,2015,15(11):7431-7440. [64] Funayama K,Nakamura T,Kuwata N, et al . Effect of mechanical stress on lithium chemical potential in positive electrodes and solid electrolytes for lithium ion batteries[J]. Electrochemistry ,2015,83(10):894-901. [65] Bandhauer T,Garimella S,Fuller T F. Electrochemical-thermal modeling to evaluate battery thermal management strategies I. Side cooling[J]. Journal of the Electrochemical Society ,2015,162(1):A125-A136. [66] Huang J,Ge H,Li Z, et al . Dynamic electrochemical impedance spectroscopy of a three-electrode lithium-ion battery during pulse charge and discharge[J]. Electrochimica Acta ,2015,176:311-320. [67] Kim T,Wang Y,Fang H, et al . Model-based condition monitoring for lithium-ion batteries[J]. Journal of Power Sources ,2015,295:16-27. [68] Suthar B,Northrop P W C,Braatz R D, et al . Optimal charging profiles with minimal intercalation-induced stresses for lithium-ion batteries using reformulated pseudo 2-dimensional models[J]. Journal of the Electrochemical Society ,2014,161(11):F3144-F3155. [69] Wandt J,Marino C,Gasteiger H A, et al . Operando electron paramagnetic resonance spectroscopy-formation of mossy lithium on lithium anodes during charge-discharge cycling[J]. Energy & Environmental Science ,2015,8(4):1358-1367. [70] Zheng Y,He Y B,Qian K, et al . Deterioration of lithium iron phosphate/graphite power batteries under high-rate discharge cycling [J]. Electrochimica Acta ,2015,176:270-279. [71] He H,Liu B,Abouimrane A, et al . Dynamic lithium intercalation/ deintercalation in 18650 lithium ion battery by time-resolved high energy synchrotron X-ray diffraction[J]. Journal of the Electrochemical Society ,2015,162(10):A2195-A2200. [72] Ziv B,Borgel V,Aurbach D, et al . Investigation of the Reasons for capacity fading in Li-ion battery cells[J]. Journal of the Electrochemical Society ,2014,161(10):A1672-A1680. [73] Tochihara M,Nara H,Mukoyama D, et al . Liquid chromatography- quadruple time of flight mass spectrometry analysis of products in degraded lithium-ion batteries[J]. Journal of the Electrochemical Society ,2015,162(10):A2008-A2015. [74] Dornbusch D A,Hilton R,Lohman S D, et al . Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries[J]. Journal of the Electrochemical Society ,2015,162(3):A262-A270. [75] Matsui M,Deguchi S,Kuwata H, et al . In-operando FTIR spectroscopy for composite electrodes of lithium-ion batteries[J]. Electrochemistry ,2015,83(10):874-882. [76] Zhu Z,Zhou Y,Yan P, et al . In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries[J]. Nano Letters ,2015,15(9):6170-6176. [77] Yang F. Field-limited migration of Li-ions in Li-ion battery[J]. ECS Electrochemistry Letters ,2015,4(1):A7-A9. [78] Walker W,Yayathi S,Shaw J, et al . Thermo-electrochemical evaluation of lithium-ion batteries for space applications[J]. Journal of Power Sources ,2015,298:217-227. [79] Baek K W,Hong E S,Cha S W. Capacity fade modeling of a lithium-ion battery for electric vehicles[J]. International Journal of Automotive Technology ,2015,16(2):309-315. [80] Sepasi S,Ghorbani R,Liaw B Y. Inline state of health estimation of lithium-ion batteries using state of charge calculation[J]. Journal of Power Sources ,2015,299:246-254. [81] Shpigel N,Levi M D,Sigalov S, et al . Non-invasive in situ dynamic monitoring of elastic properties of composite battery electrodes by EQCM-D[J]. Angewandte Chemie-International Edition ,2015,54(42):12353-12359. [82] Li J,Petibon R,Glazier S, et al . In-situ neutron diffraction study of a high voltage Li(Ni 0.42 Mn 0.42 Co 0.16 )O 2 /graphite pouch cell[J]. Electrochimica Acta ,2015,180:234-240. [83] Michalak B,Sommer H,Mannes D, et al . Gas evolution in operating lithium-ion batteries studied in situ by neutron imaging [J]. Scientific Reports ,2015,5(15627):doi:10.10381srep15627. [84] Vadlamani B,An K,Jagannathan M, et al . An in-situ electrochemical cell for neutron diffraction studies of phase transitions in small volume electrodes of Li-ion batteries[J]. Journal of the Electrochemical Society ,2014,161(10):A1731-A1741. [85] Lanz P,Novak P. Combined in situ Raman and IR microscopy at the interface of a single graphite particle with ethylene carbonate/dimethyl carbonate[J]. Journal of the Electrochemical Society ,2014,161(10):A1555-A1563. [86] Bernhard R,Metzger M,Gasteiger H A. Gas evolution at graphite anodes depending on electrolyte water content and SEI quality studied by on-line electrochemical mass spectrometry[J]. Journal of the Electrochemical Society ,2015,162(10):A1984-A1993. [87] Evertz M,Luerenbaum C,Vortmann B, et al. Development of a method for direct elemental analysis of lithium ion battery degradation products by means of total reflection X-ray fluorescence [J]. Spectrochimica Acta Part B : Atomic Spectroscopy ,2015,112:34-43. [88] Love C T,Baturina O A,Swider-Lyons K E. Observation of lithium dendrites at ambient temperature and below[J]. ECS Electrochemistry Letters ,2015,4(2):A24-A31. [89] Hsieh A G,Bhadra S,Hertzberg B J, et al . Electrochemical-acoustic time of flight:In operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science ,2015,8(5):1569-1577. [90] Agubra V,Fergus J W,Rujian F, et al . The effect of battery potential and charge rate on the decomposition reaction on the anode electrode of lithium ion polymer battery[J]. ECS Transactions ,2014,61(8):11-25. [91] Bloom I,Rago N D,Jansen A N, et al . Post-test analysis of battery materials:Another part of the question[J]. ECS Transactions ,2014,61(27):66-75. [92] Joshi T,Eom K,Yushin G, et al . Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries[J]. Journal of the Electrochemical Society ,2014,161(12):A1915-A1921. [93] Lin L,Min Z. Modeling of SEI layer growth and electrochemical impedance spectroscopy response using a thermal-electrochemical model of Li-ion batteries[J]. ECS Transactions ,2014,61(27):43-61. [94] Roberts S A,Brunini V E,Long K N, et al . A framework for three-dimensional mesoscale modeling of anisotropic swelling and mechanical deformation in lithium-ion electrodes[J]. Journal of the Electrochemical Society ,2014,161(11):F3052-F3061. [95] Kim S,Aykol M,Wolverton C. Surface phase diagram and stability of (001) and (111) LiMn 2 O 4 spinel oxides[J]. Physical Review B ,2015,92(11): [96] Okamoto Y. Decomposition mechanism of ethylene carbonate and fluoroethylene carbonate through hydrogen abstraction under high voltage environment: An ab-initio study[J]. Journal of the Electrochemical Society ,2014,161(10):A1527-A1533. [97] Kim K J,Qi Y. Vacancies in Si can improve the concentration- dependent lithiation rate:Molecular dynamics studies of lithiation dynamics of Si electrodes[J]. Journal of Physical Chemistry C ,2015,119(43):24265-24275. [98] Tachikawa N,Furuya R,Yoshii K, et al . Deposition and dissolution of lithium through lithium phosphorus oxynitride thin film in lithium bis(trifluoromethylsulfonyl) amide-glyme solvate ionic liquid[J]. Electrochemistry ,2015,83(10):846-854. [99] Zhu Y Z,He X F,Mo Y F. Origin of outstanding stability in the lithium solid electrolyte materials:Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces ,2015,7(42):23685-23693. [100] Li D,Danilov D,Zhang Z, et al. Electron tunneling based SEI formation model [C]//Fergus J W. 17th International Meeting on Lithium Batteries. 2014:1-8. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||