[1] PANDOLFO A G,HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157(1):11-27.
[2] VOLFKOVICH Y M,BOGRACHEV D A,MIKHALIN A A,et al. Supercapacitor carbon electrodes with high capacitance[J]. Journal of Solid State Electrochemistry,2014,18(5):1351-1363.
[3] BÉGUIN F,PRESSER V,BALDUCCI A,et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials,2014,26(14):1-33.
[4] 弗朗索瓦,等. 超级电容器:材料、系统及应用[M]. 张治安. 北京:机械工业出版社,2014:107-108.
FRANCOIS B,et al. Supercapitors:Materials, systems, and applications[M]. ZHANG Z A. Beijing:China Machine Press,2014:107-108.
[5] PANDOLFO A G,HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157(1):11-27.
[6] GAO Yu,Li LEI,JIN Yuming,et al. Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor[J]. Applied Energy,2015,153(23):41-47.
[7] MYSYK R,RAYMUNDO-PIÑERO E,BÉGUIN F. Saturation of subnanometer pores in an electric double-layer capacitor[J]. Electrochemistry Communications,2009,11(3):554-556.
[8] CHENG Zhong,DENG Yida,HU Wenbin,et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem .Soc. Rev.,2015,44(21):7431-7920.
[9] HNTEL M M,WEINGARTH D,TZ R K. Parameters determining dimensional changes of porous carbons during capacitive charging[J]. Carbon,2014,69(4):275-286.
[10] LÜCK J,LATZ A. About the electric charge on the surface of an electrolyte[J]. J. Phys. Theor. Appl.,1910,9(12):457-468.
[11] STERN O. Zur theorie der elektrolytischen doppelschicht[J]. Zeitschrift Für Elektrochemie and Angewandte Physikalische Chemie,1924,30(21/22):508-516.
[12] DUTTA S,BHAUMIK A,KEVINC W W. Hierarchically porous carbon derived from polymers and biomass:Effect of interconnected pores on energy applications[J]. Energy & Environmental Science,2014,7(11):3445-3816.
[13] BARBIERI O,HAHN M,HERZOG A,et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon,2005,43(6):1303-1310.
[14] STOLLER M D,MAGNUSON C W,ZHU Y,et al. Interfacial capacitance of single layer graphene[J]. Energy Environ. Sci.,2011,4(11):4685-4689.
[15] GHOSH A,LEE Y H. Carbon-based electrochemical capacitors[J]. ChemSusChem,2012,5(3):480-499.
[16] VIX-GUTERL C,FRACKOWIAK E,KRZYSZTOFJUREWICZ,et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon,2005,43(6):1293-1302.
[17] AVRAHAM E,YANIV B,SOFFER A A,et al. Developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ separation in water capacitive desalination[J]. J. Phys. Chem. C,2008,112(19):7385-7389.
[18] ELIAD L,POLLAK E,LEVY N,et al. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors[J]. Appl. Phys. A,2006,82(4):607-613.
[19] NOKED M,AVRAHAM E,BOHADANA Y,et al. The rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination[J]. J. Phys. Chem. C,2009,113(51):21319-21327.
[20] CACHET-VIVIER C,VIVIER V,CHA C S,et al. Electrochemistry of powder material studied by means of the cavity microelectrode (CME)[J]. Electrochim. Acta,2001,47(1/2):181-189.
[21] MIN-JUNG J,JEONG E,KIM Y,et al. Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors[J]. Journal of Industrial and Engineering Chemistry,2013,19(4):1315-1319.
[22] ´NDEZ P F,CASTRO E B,REAL S G,et al. Electrochemical behaviour of single walled carbon nanotubes-hydrogen storage and hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2009,34(19):8115-8126.
[23] YOON S,SEUNG M O,LEE C W,et al. Pore structure tuning of mesoporous carbon prepared by direct templating method for application to high rate supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry,2011,650(2):187-195.
[24] XIA Kaisheng,GAO Qiuming,JIANG Jinhua,et al. Hierarchical porous carbons with controlled micropores[J]. Carbon,2008,46(21):1718-1726.
[25] VIX-GUTERL C,FRACKOWIAK E,JUREWICZ K,et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon,2005,43(6):1293-1302.
[26] CHMIOLA J,YUSHIN G,GOGOTSI Y,et al. Anomalous increase in carbon capacitance at pores sizes less than 1 NM[J]. Science,2006,313(22):1760-1763.
[27] CHMIOLA J,LARGEOT C,TABERNA P L,et al. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory[J]. Angew. Chem. Int. Ed.,2008,47(18):3440-3443.
[28] ANIA C O,PERNAK J,STEFANIAK F,et al. Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors[J]. Carbon,2009,47(14):3158-3166.
[29] MATTHEW E S,THEODORE F B,WORSLEY M A,et al. Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity[J]. Journal of Power Sources,2013,241(14):266-273.
[30] ZHENG Xiaoyu,LUO Jiayan,WEI Lv,et al. Two-dimensional porous carbon synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388-5395.
[31] WU Mingbo,AI Peipei,TAN Minghui,et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chemical Engineering Journal,2014,245(6):166-172.
[32] ZHANG Q F,UCHAKER E,CANDELARIA S L,et al. Nanomaterials for energy conversion and storage[J]. Chem. Soc. Rev.,2013,42(7):3127-3171.
[33] MYSYK R,RAYMUNDO-PINERO E,PERNAK J,et al. Confinement of symmetric tetraalkylammonium ions in nanoporous carbon electrodes of electric double-layer capacitors[J]. J. Phys. Chem. C,2009,113(30):13443-13449.
[34] HAHN M,BARBIERI O,CAMPANA F P,et al. Carbon based double layer capacitors with aprotic electrolyte solutions:The possible role of intercalation/insertion processes[J]. Appl. Phys .A,2006,82(4):633-638.
[35] LAURENCE J H,HAHN M,RUCH P,et al. An in situ raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite[J]. Electrochimica Acta,2006,52(2):675-680.
[36] HUANG J S,SUMPTER B G,MEUNIER V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chem. Eur. J.,2008,14(22):6614-6626.
[37] HUANG J S,SUMPTER B G,MEUNIER V. Theoretical model for nanoporous carbon supercapacitors[J]. Angew. Chemie. Int. Edition,2008,47(3):520-524.
[38] FORSE A C,MERLET C,GRIFFIN J M,et al. New perspectives on the charging mechanisms of supercapacitors[J]. Journal of the American Chemical Society,2016,138(18):5731-5744.
[39] FORSE A C,GRIFFIN J M,WANG Hao,et al. Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon[J]. Physical Chemistry Chemical Physics,2013,15(20):7722-7730.
[40] ALEXANDER C F,MERLET C,PHOEBE K A,et al. New insights into the structure of nanoporous carbons from nmr, raman, and pair distribution function analysis[J]. Chemistry of Materials,2015,27(19):6848-6857.
[41] GRIFFIN J M,ALEXANDER C F,CLARE P G. Solid-state NMR studies of supercapacitors[J]. Solid State Nuclear Magnetic Resonance,2016,74(75):16-35.
[42] WANG H,FORSE A C,GRIFFIN J M,et al. In situ NMR spectroscopy of supercapacitors:Insight into the charge storage mechanism[J]. Journal of the American Chemical Society,2013,135(50):18968-18980.