储能科学与技术 ›› 2017, Vol. 6 ›› Issue (3): 418-432.doi: 10.12028/j.issn.2095-4239.2017.0027

• 特约文章 • 上一篇    下一篇

锂枝晶的原位观测及生长机制研究进展

沈  馨1,2,张  睿1,程新兵1,管  超1,3,黄佳琦2,张  强1   

  1. 1清华大学化学工程系,北京 100084;2北京理工大学前沿交叉科学研究院,北京 100081;3清华大学机械工程系,北京 100084
  • 收稿日期:2017-03-18 修回日期:2017-03-23 出版日期:2017-05-01 发布日期:2017-05-01
  • 通讯作者: 张强,研究员,主要研究方向为能源材料,尤其是金属锂、锂硫电池和电催化剂,E-mail:zhang- qiang@mails.tsinghua.edu.cn。
  • 作者简介:沈馨(1995—),女,硕士研究生,主要研究方向为金属锂负极,E-mail:shenxin0307@163.com
  • 基金资助:
    国家重点研发计划(2016YFA0202500),国家重点基础研究发展计划(2015CB932500),国家自然科学基金项目(21676160)。

Recent progress on in-situ observation and growth mechanism of lithium metal dendrites

SHEN Xin1,2, ZHANG Rui1, CHENG Xinbing1, GUAN Chao1,3, HUANG Jiaqi2, ZHANG Qiang1   

  1. 1 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; 2 Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; 3Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2017-03-18 Revised:2017-03-23 Online:2017-05-01 Published:2017-05-01

摘要: 随着人们对储能设备需求的日益增加,开发高能量密度的二次电池受到了广泛的关注。金属锂以其低密度、高理论比容量、最低的还原电势等优势成为高性能二次电池电极材料的首选。然而,枝晶生长及其随之而来的电池安全隐患和循环寿命的降低严重困扰着金属锂负极的实际应用。通过原位观测金属锂枝晶生长行为,探究其生长机理与影响因素,有助于提高金属锂电池的安全性、利用率和循环寿命。本文综述了金属锂电池原位观测方面的研究进展,总结了现有的原位实时观测装置,锂枝晶的原位观测现象以及模拟模型,最后对锂金属枝晶原位观测的下一步发展进行了展望。

关键词: 金属锂负极, 枝晶, 生长机理, 原位观察, 光学显微镜, 电子显微镜

Abstract:

As the increasing demands of energy storage devices, high energy density rechargeable batteries have been strongly considered. Thanks to the low mass density, high theoretical specific energy density, and lowest redox potential, metallic lithium becomes one of the most promising anode materials to build high-performance rechargeable batteries. However, the formation of lithium dendrites causes rapid capacity degradation, short cycle life, and potential safety hazard of working lithium batteries. This hinders its practical applications. In-situ observation is highly beneficial to explore the growth mechanism of lithium dendrites and improve the battery performance. In this review, the progress on in-situ observation devices, their applications in Li dendrite observation and the obtained models for dendrite growth are summarized. Finally, the perspective of lithium metal anode through in-situ/operando characterization is discussed.

Key words:  lithium metal anode, lithium dendrites, growth mechanism, in-situ characterization, optical microscope, electron microscopy