储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 1114-1127.doi: 10.12028/j.issn.2095-4239.2017.0141
陈宇阳,起文斌,金 周,张 华,詹元杰,武怿达,赵俊年,陈 彬,俞海龙,贲留斌,刘燕燕,黄学杰
收稿日期:
2017-08-15
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@iphy.ac.cn。
作者简介:
陈宇阳(1991—),男,博士研究生,研究方向为锂离子电池正极材料及表界面的第一性原理计算,E-mail:chenyuyang13@mails.ucas.ac.cn
CHEN Yuyang, QI Wenbin, JIN Zhou, ZHANG Hua, ZHAN Yuanjie, WU Yida, ZHAO Junnian, CHEN Bin,YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2017-08-15
Online:
2017-09-01
Published:
2017-09-01
摘要: 该文是一篇近两个月的锂电池文献评述,我们以“lithium”和“batter*”为关键词检索了Web of Science从2017年6月1日至2017年7月31日上线的锂电池研究论文,共有1961篇,选择其中100篇加以评论。正极材料主要研究了层状、尖晶石和磷酸盐正极材料的结构演变以及表面包覆和掺杂对它们的循环寿命和热稳定性的影响。高容量的硅、锡基负极材料侧重于研究材料合成和应用条件与循环性能的关系以及容量随循环损失的机理。金属锂负极的研究侧重于通过集流体和表面覆盖层的设计来提高其循环性能。固态电解质方面制备方法和界面修饰是研究重点,电解液添加剂的研究目标是提高电池的高温稳定性。锂空电池、锂硫电池侧重于改进电池的循环性能。理论模拟工作包括材料体相、界面结构和输运性质,除了以材料为主的研究之外,针对电池的原位分析的研究论文也有多篇。
陈宇阳,起文斌,金 周,张 华,詹元杰,武怿达,赵俊年,陈 彬,俞海龙,贲留斌,刘燕燕,黄学杰. 锂电池百篇论文点评(2017.6.1—2017.7.31)[J]. 储能科学与技术, 2017, 6(5): 1114-1127.
CHEN Yuyang, QI Wenbin, JIN Zhou, ZHANG Hua, ZHAN Yuanjie, WU Yida, ZHAO Junnian, CHEN Bin,YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Jun. 1,2017 to Jul. 31,2017)[J]. Energy Storage Science and Technology, 2017, 6(5): 1114-1127.
[1] MOHANTY D, MAZUMDER B, DEVARAJ A, et al. Resolving the degradation pathways in high-voltage oxides for high-energy- density lithium-ion batteries; Alternation in chemistry, composition and crystal structures[J]. Nano Energy, 2017, 36: 76-84. [2] MALLICK M M, VITTA S. Giant enhancement in high-temperature thermoelectric figure-of-merit of layered cobalt oxide, LiCoO2, due to a dual strategy-Co-substitution and lithiation[J]. Inorganic Chemistry, 2017, 56(10): 5827-5838. [3] YOON C S, JUN D W, MYUNG S T, et al. Structural stability of LiNiO2 cycled above 4.2 V[J]. Acs Energy Letters, 2017, 2(5): 1150-1155. [4] JUNG R, METZGER M, MAGLIA F, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2(NMC) cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1361-A1377. [5] DENG S X, XIAO B W, WANG B Q, et al. New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes[J]. Nano Energy, 2017, 38: 19-27. [6] MATTELAER F, VEREECKEN P M, DENDOOVEN J, et al. The influence of ultrathin amorphous ALD alumina and titania on the rate capability of anatase TiO2 and LiMn2O4 lithium ion battery electrodes[J]. Advanced Materials Interfaces, 2017, 4(13): doi: 10.1002/admi.201601237. [7] JIN Y C, DUH J G. Kinetic study of high voltage spinel cathode material in a wide temperature range for lithium ion battery[J]. Journal of the Electrochemical Society, 2017, 164(4): A735-A740. [8] SATOU Y, KOMINE S, ITOU S, et al. Differences between the kinetically preferred states of LiFePO4 during charging and discharging observed using in situ X-ray diffraction measurements[J]. Journal of the Electrochemical Society, 2017, 164(6): A1281-A1284. [9] BRUTTI S, MANZI J, MEGGIOLARO D, et al. Interplay between local structure and transport properties in iron-doped LiCoPO4 olivines[J]. Journal of Materials Chemistry A, 2017, 5(27): 14020-14030. [10] IKUHARA Y H, GAO X, FISHER C A J, et al. Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO4[J]. Journal of Materials Chemistry A, 2017, 5(19): 9329-9338. [11] LIU H, CHOE M J, ENRIQUE R A, et al. Effects of antisite defects on Li diffusion in LiFePO4 revealed, by Li isotope exchange[J]. Journal of Physical Chemistry C, 2017, 121(22): 12025-12036. [12] ASAKURA D, HOSONO E, OKUBO M, et al. Correlation between the O2p orbital and redox reaction in LiMn0.6Fe0.4PO4 nanowires studied by soft X-ray absorption[J]. Chemphyschem, 2016, 17(24): 4110-4115. [13] CHERKASHININ G, SHARATH S U, JAEGERMANN W. Toward enhanced electronic and ionic conductivity in olivine LiCoPO4 thin film electrode material for 5 V lithium batteries: Effect of LiCo2P3O10 impurity phase[J]. Advanced Energy Materials, 2017, 7(13): doi: 10.1002/aenm.201602321. [14] SACCI R L, LEHMANN M L, DIALLO S O, et al. Lithium transport in an amorphous LixSi anode investigated by quasi-elastic neutron scattering[J]. Journal of Physical Chemistry C, 2017, 121(21): 11083-11088. [15] DOMI Y, USUI H, IWANARI D, et al. Effect of mechanical pre-lithiation on electrochemical performance of silicon negative electrode for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1651-A1654. [16] LIU Z J, BAI S, LIU B L, et al. Interfacial modification of a lightweight carbon foam current collector for high-energy density Si/LCO lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(25): 13168-13175. [17] SURESH S, WU Z P, BARTOLUCCI S F, et al. Protecting silicon film anodes in lithium-ion batteries using an atomically thin graphene drape[J]. Acs Nano, 2017, 11(5): 5051-5061. [18] CHEN S Q, SHEN L F, VAN AKEN P A, et al. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Advanced Materials, 2017, 29(21): doi: 10.1002/adma.201605650. [19] EMETS V V, KULOVA T L, SKUNDIN A M. Dynamic behavior of silicon-based electrodes at open circuit conditions[J]. International Journal of Electrochemical Science, 2017, 12(4): 2754-2762. [20] JIN Y, TAN Y L, HU X Z, et al. Scalable production of the silicon-tin yin-yang hybrid structure with graphene coating for high performance lithium-ion battery anodes[J]. Acs Applied Materials & Interfaces, 2017, 9(18): 15388-15393. [21] LI X L, YAN P F, XIAO X C, et al. Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling[J]. Energy & Environmental Science, 2017, 10(6): 1427-1434. [22] JERLIU B, HUGER E, HORISBERGER M, et al. Irreversible lithium storage during lithiation of amorphous silicon thin film electrodes studied by in-situ neutron reflectometry[J]. Journal of Power Sources, 2017, 359: 415-421. [23] MA T Y, YU X N, LI H Y, et al. High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries[J]. Nano Letters, 2017, 17(6): 3959-3964. [24] XU Y L, SWAANS E, CHEN S B, et al. A high-performance Li-ion anode from direct deposition of Si nanoparticles[J]. Nano Energy, 2017, 38: 477-485. [25] CHEN C H, CHASON E, GUDURU P R. Measurements of the phase and stress evolution during initial lithiation of Sn electrodes[J]. Journal of the Electrochemical Society, 2017, 164(4): A574-A579. [26] SHI Q, HENG S, QU Q T, et al. Constructing an elastic solid electrolyte interphase on graphite: A novel strategy suppressing lithium inventory loss in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(22): 10885-10894. [27] JUNG J, HAH H J, LEE T J, et al. Effect of pre-cycling rate on the passivating ability of surface films on Li4Ti5O12 electrodes[J]. Journal of Electrochemical Science and Technology, 2017, 8(1): 15-24. [28] CHI S S, LIU Y C, SONG W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): doi: 10.1002/ adfm.201700348. [29] RAJI A R O, SALVATIERRA R V, KIM N D, et al. Lithium batteries with nearly maximum metal storage[J]. Acs Nano, 2017, 11(6): 6362-6369. [30] DRUE M, SEYRING M, RETTENMAYR M. Phase formation and microstructure in lithium-carbon intercalation compounds during lithium uptake and release[J]. Journal of Power Sources, 2017, 353: 58-66. [31] CHEN K H, WOOD K N, KAZYAK E, et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. Journal of Materials Chemistry A, 2017, 5(23): 11671-11681. [32] CHEN L, CONNELL J G, NIE A M, et al. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes[J]. Journal of Materials Chemistry A, 2017, 5(24): 12297-12309. [33] ODZIOMEK M, CHAPUT F, RUTKOWSKA A, et al. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries[J]. Nature Communications, 2017, 8: 1-7. [34] ISHIKAWA K, ITO Y, HARADA S, et al. Crystal orientation dependence of precipitate structure of electrodeposited Li metal on Cu current collectors[J]. Crystal Growth & Design, 2017, 17(5): 2379-2385. [35] CHOI Y E, PARK K H, KIM D H, et al. Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries[J]. Chemsuschem, 2017, 10(12): 2605-2611. [36] AUVERGNIOT J, CASSEL A, LEDEUIL J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890. [37] SUZUKI S, KAWAJI J, YOSHIDA K, et al. Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte[J]. Journal of Power Sources, 2017, 359: 97-103. [38] ZHANG W B, WEBER D A, WEIGAND H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(21): 17835-17845. [39] LEE S D, JUNG K N, KIM H, et al. Composite electrolyte for all-solid-state lithium batteries: Low-temperature fabrication and conductivity enhancement[J]. Chemsuschem, 2017, 10(10): 2175-2181. [40] FU K, GONG Y H, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575. [41] DING M S, KOCH S L, PASSERINI S. The effect of 1-pentylamine as solid electrolyte interphase precursor on lithium metal anodes[J]. Electrochimica Acta, 2017, 240: 408-414. [42] LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2(5): doi: 10.1038/nenergy.2017.35. [43] BASAPPA R H, ITO T, YAMADA H. Contact between garnet-type solid electrolyte and lithium metal anode: Influence on charge transfer resistance and short circuit prevention[J]. Journal of the Electrochemical Society, 2017, 164(4): A666-A671. [44] GUO Z Y, LI C, LIU J Y, et al. A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator[J]. Angewandte Chemie-International Edition, 2017, 56(26): 7505-7509. [45] HAKARI T, DEGUCHI M, MITSUHARA K, et al. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion-insertion processes[J]. Chemistry of Materials, 2017, 29(11): 4768-4774. [46] DENG B W, WANG H, GE W J, et al. Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive[J]. Electrochimica Acta, 2017, 236: 61-71. [47] PEEBLES C, SAHORE R, GILBERT J A, et al. Tris(trimethylsilyl) phosphite(TMSPi) and triethyl phosphite(TEPi) as electrolyte additives for lithium ion batteries: Mechanistic insights into differences during LiNi0.5Mn0.3Co0.2O2-Graphite full cell cycling[J]. Journal of the Electrochemical Society, 2017, 164(7): A1579-A1586. [48]. DEMEAUX J, DONG Y N, LUCHT B L. Reversible graphite anode cycling with PC-based electrolytes enabled by added sulfur trioxide complexes[J]. Journal of the Electrochemical Society, 2017, 164(7): A1352-A1360. [49] SHARMA G, JIN Y, LIN Y S. Lithium ion batteries with alumina separator for improved safety[J]. Journal of the Electrochemical Society, 2017, 164(6): A1184-A1191. [50] SHOBUKAWA H, ALVARADO J, YANG Y Y C, et al. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell[J]. Journal of Power Sources, 2017, 359: 173-181. [51] DONG Y N, YOUNG B T, ZHANG Y Z, et al. Effect of lithium borate additives on cathode film formation in LiNi0.5Mn1.5O4/Li cells[J]. Acs Applied Materials & Interfaces, 2017, 9(24): 20467-20475. [52] RUSTOMJI C S, YANG Y, KIM T K, et al. Liquefied gas electrolytes for electrochemical energy storage devices[J]. Science, 2017, 356(6345): doi: 10.1126/science.aal4263. [53] YU H L, ZHAO J N, BEN L B, et al. Dendrite-free lithium deposition with self aligned columnar structure in a carbonate-ether mixed electrolyte[J]. Acs Energy Letters, 2017, 2(6): 1296-1302. [54] CHA J, HAN J G, HWANG J, et al. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 97-106. [55] CAPPETTO A, CAO W J, LUO J F, et al. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells[J]. Journal of Power Sources, 2017, 359: 205-214. [56] MAHNE N, SCHAFZAHL B, LEYPOLD C, et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries[J]. Nature Energy, 2017, 2(5): doi: 10.1038/nenergy.2017.36. [57] ZHANG J Q, SUN B, ZHAO Y F, et al. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries[J]. Angewandte Chemie-International Edition, 2017, 56(29): 8505-8509. [58] XU J J, LIU Q C, YU Y, et al. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries[J]. Advanced Materials, 2017, 29(24): doi: 10.1002/adma.201606552. [59] GITTLESON F S, JONES R E, WARD D K, et al. Oxygen solubility and transport in Li-air battery electrolytes: Establishing criteria and strategies for electrolyte design[J]. Energy & Environmental Science, 2017, 10(5): 1167-1179. [60] LACEY M J, OUML S V, BERGFELT A, et al. A robust, water-based, functional binder framework for high-energy lithium-sulfur batteries[J]. Chemsuschem, 2017, 10(13): 2758-2766. [61] GUO J L, DU X Y, ZHANG X L, et al. Facile formation of a solid electrolyte interface as a smart blocking layer for high-stability sulfur cathode[J]. Advanced Materials, 2017, 29(26): doi: 10.1002/adma.201700273. [62] CHEN Y, LU S T, ZHOU J, et al. Synergistically assembled Li2S/FWNTs@reduced graphene oxide nanobundle forest for free-standing high-performance Li2S cathodes[J]. Advanced Functional Materials, 2017, 27(25): doi: 10.1002/adfm.201700987 . [63] XU Z L, HUANG J Q, CHONG W G, et al. In situ TEM study of volume expansion in porous carbon nanofiber/sulfur cathodes with exceptional high-rate performance[J]. Advanced Energy Materials, 2017, 7(9): doi: 10.1002/aenm.201602078. [64] CHUNG S H, MANTHIRAM A. Lithium-sulfur batteries with the lowest self-discharge and the longest shelf life[J]. Acs Energy Letters, 2017, 2(5): 1056-1061. [65] MA L, KIM M S, ARCHER L A. Stable artificial solid electrolyte interphases for lithium batteries[J]. Chemistry of Materials, 2017, 29(10): 4181-4189. [66] CHUNG S H, HAN P, MANTHIRAM A. Quantitative analysis of electrochemical and electrode stability with low self-discharge lithium-sulfur batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(24): 20318-20323. [67] GU S, HUANG X, WANG Q, et al. A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(27): 13971-13975. [68] PENG H J, HUANG J Q, LIU X Y, et al. Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control[J]. Journal of the American Chemical Society, 2017, 139(25): 8458-8466. [69] LUO W, GONG Y H, ZHU Y Z, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22): doi: 10.1002/adma.201606042. [70] GLAZIER S L, PETIBON R, XIA J, et al. Measuring the parasitic heat flow of lithium ion pouch cells containing EC-free electrolytes[J]. Journal of the Electrochemical Society, 2017, 164(4): A567-A573. [71] LI W D, KIM U H, DOLOCAN A, et al. Formation and inhibition of metallic lithium microstructures in lithium batteries driven by chemical crossover[J]. Acs Nano, 2017, 11(6): 5853-5863. [72] ZHONG L, LIU Y, HAN W Q, et al. In situ observation of single-phase lithium intercalation in sub-25-nm nanoparticles[J]. Advanced Materials, 2017, 29(26): doi: 10.1002/adma.201700236. [73] GE H, AOKI T, IKEDA N, et al. Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization[J]. Journal of the Electrochemical Society, 2017, 164(6): A1050-A1060. [74] MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. Acs Energy Letters, 2017, 2(6): 1321-1326. [75] SEKI S. Solvent-free 4 V-class all-solid-state lithium-ion polymer secondary batteries[J]. Chemistryselect, 2017, 2(13): 3848-3853. [76] TAKATA K. In-situ imaging of Li intercalation in graphite particles in an Li-ion battery[J]. Journal of Microscopy, 2017, 266(3): 249-252. [77] GLENNEBERG J, BARDENHAGEN I, LANGER F, et al. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress[J]. Journal of Power Sources, 2017, 359: 157-165. [78] HESS M. Non-linearity of the solid-electrolyte-interphase overpotential[J]. Electrochimica Acta, 2017, 244: 69-76. [79] KIM D H, OH D Y, PARK K H, et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion- battery electrodes for all-solid-state Li-ion batteries[J]. Nano Letters, 2017, 17(5): 3013-3020. [80] BRON P, ROLING B, DEHNEN S. Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes[J]. Journal of Power Sources, 2017, 352: 127-134. [81] FANG S Y, YAN M, HAMERS R J. Cell design and image analysis for in situ Raman mapping of inhomogeneous state-of-charge profiles in lithium-ion batteries[J]. Journal of Power Sources, 2017, 352: 18-25. [82] LENG Y J, GE S H, MARPLE D, et al. Electrochemical cycle-life characterization of high energy lithium-ion cells with thick Li(Ni0.6Mn0.2Co0.2)O2 and graphite electrodes[J]. Journal of the Electrochemical Society, 2017, 164(6): A1037-A1049. [83] BRENNAN M D, BREEDON M, BEST A S, et al. Surface reactions of ethylene carbonate and propylene carbonate on the Li(001) surface[J]. Electrochimica Acta, 2017, 243: 320-330. [84] HEENEN H H, SCHEURER C, REUTER K. Implications of occupational disorder on ion mobility in Li4Ti5O12 battery materials[J]. Nano Letters, 2017, 17(6): 3884-3888. [85] YUN K S, PAI S J, YEO B C, et al. Simulation protocol for prediction of a solid-electrolyte interphase on the silicon-based anodes of a lithium-ion battery: reaxff reactive force field[J]. Journal of Physical Chemistry Letters, 2017, 8(13): 2812-2818. [86] HU Z L, ZHANG S, DONG S M, et al. Poly(ethyl alpha-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes[J]. Chemistry of Materials, 2017, 29(11): 4682-4689. [87] NANDASIRI M I, CAMACHO-FORERO L E, SCHWARZ A M, et al. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries[J]. Chemistry of Materials, 2017, 29(11): 4728-4737. [88] BENDERSKY L A, TAN H, KARUPPANAN K B, et al. Crystallography and growth of epitaxial oxide films for fundamental studies of cathode materials used in advanced Li-ion batteries[J]. Crystals, 2017, 7(5): doi:10.3390/cryst7050127. [89] THAI K, LEE E. Effects of mechanical strain on ionic conductivity in the interface between LiPON and Ni-Mn spinel[J]. Journal of the Electrochemical Society, 2017, 164(4): A594-A599. [90] WAN C, XU S C, HU M Y, et al. Multinuclear NMR study of the solid electrolyte interface formed in lithium metal batteries[J]. Acs Applied Materials & Interfaces, 2017, 9(17): 14741-14748. [91] KIM D W, SHIIBA H, ZETTSU N, et al. Full picture discovery for mixed-fluorine anion effects on high-voltage spinel lithium nickel manganese oxide cathodes[J]. Npg Asia Materials, 2017(9): doi:10.1038/am.2017.90. [92] XU F, WU L J, MENG Q P, et al. Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods[J]. Nature Communications, 2017(8): doi:10.1038/ ncomms15400. [93] BUCCI G, SWAMY T, BISHOP S, et al. The effect of stress on battery-electrode capacity[J]. Journal of the Electrochemical Society, 2017, 164(4): A645-A654. [94] CHENG T, MERINOV B V, MOROZOV S, et al. Quantum mechanics reactive dynamics study of solid Li-electrode/ Li6PS5Cl-electrolyte interface[J]. Acs Energy Letters, 2017, 2(6): 1454-1459. [95] GANAPATHY S, VASILEIADIS A, HERINGA J R, et al. The fine line between a two-phase and solid-solution phase transformation and highly mobile phase interfaces in spinel Li4+xTi5O12[J]. Advanced Energy Materials, 2017, 7(9): doi: 10.1002/aenm.201601781. [96] CHEONG J Y, KIM C, JUNG J W, et al. Formation of a surficial bifunctional nanolayer on Nb2O5 for ultrastable electrodes for lithium-ion battery[J]. Small, 2017, 13(19): doi: 10.1002/smll.201603610. [97] SICOLO S, FINGERLE M, HAUSBRAND R, et al. Interfacial instability of amorphous LiPON against lithium: A combined density functional theory and spectroscopic study[J]. Journal of Power Sources, 2017, 354: 124-133. [98] WANG X L, XIAO R J, LI H, et al. Oxysulfide LiAlSO: A lithium superionic conductor from first principles[J]. Physical Review Letters, 2017, 118(19): doi:10.1103/PhysRevLett.118.195901. [99] CHANDRASEKARAN S S, MURUGAN P. Structural and electronic properties of solid-state(LiMPO4 vertical bar gamma-Li3PO4)(010) electrochemical interface(M= Fe and Co)[J]. Applied Surface Science, 2017, 418: 17-21. [100] HOU T Z, XU W T, CHEN X, et al. Lithium bond chemistry in lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2017, 56(28): 8178-8182. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||