储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 841-854.doi: 10.12028/j.issn.2095-4239.2017.0099
王 昊,贲留斌,林明翔,陈宇阳,黄学杰
收稿日期:
2017-06-09
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail: xjhuang@iphy.ac.cn。
作者简介:
王昊(1990—),男,博士研究生,研究方向为锂离子电池正极材料,E-mail:wanghaoe_mail@163.com
基金资助:
WANG Hao, BEN Liubin, LIN Mingxiang, CHEN Yuyang, HUANG Xuejie
Received:
2017-06-09
Online:
2017-09-01
Published:
2017-09-01
摘要: 锂离子电池在电子产品市场起着重要作用,而应用于可持续交通领域的高能量密度和功率密度的锂离子电池仍然得到广泛的研究。为了将锂离子电池的能量密度提高至200 W•h/kg以上,以尖晶石LiNi0.5Mn1.5O4 (LNMO)作为正极材料,石墨作为负极材料的电池是最有希望的方案之一。这种电池具有很多优点,即工作电压高(约4.7 V vs. Li/Li+)、可用比容量高(约135 mA•h/g)、倍率性能优异、成本相对较低。本文比较了两种空间群的LNMO(无序的Fd-3m和有序的P4332)在原子尺度的结构差异以及相应的电化学性能差异,并阐述了二者之间的关系。详细报道了LNMO在首周充放电过程(3.5~4.9 V)中局部原子结构(特别是表面区域)。此外,综述了LNMO的合成方法以及对其包覆和掺杂的效果。除了传统的包覆和掺杂,我们报道了用纳米尺寸的TiO2对LNMO进行表面修饰,结果表明LNMO的表面被TiO2颗粒覆盖,并且Ti离子掺杂进入到LNMO表面几纳米的区域。此外报道了表面修饰对LNMO在25 ℃和55 ℃条件下的电化学循环性能的影响。
王 昊,贲留斌,林明翔,陈宇阳,黄学杰. 锂离子电池高电压正极材料LiNi0.5Mn1.5O4的研究进展[J]. 储能科学与技术, 2017, 6(5): 841-854.
WANG Hao, BEN Liubin, LIN Mingxiang, CHEN Yuyang, HUANG Xuejie. Research progress on high voltage cathode material LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 841-854.
[1] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. [2] RAVET N, CHOUINARD Y, MAGNAN J F, et al. Electroactivity of natural and synthetic triphylite[J]. Journal of Power Sources, 2001, 97-98: 503-507. [3] AMINE K, TUKAMOTO H, YASUDA H, et al. A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries[J]. Journal of the Electrochemical Society, 1996, 143(5): 1607-1613. [4] ZHONG Q M, BONAKDARPOUR A, ZHANG M J, et al. Synthesis and electrochemistry of LiNixMn2xO4[J]. Journal of the Electrochemical Society, 1997, 144(1): 205-213. [5] ELLIS B L, LEE K T, NAZAR L F. Positive electrode materials for Li-ion and Li-batteries[J]. Chemistry of Materials, 2010, 22(3): 691-714. [6] PARK O K, CHO Y, LEE S, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy & Environmental Science, 2011, 4(5): 1621-1633. [7] LIU D, ZHU W, TROTTIER J, et al. Spinel materials for high-voltage cathodes in Li-ion batteries[J]. RSC Advances, 2014, 4(1): 154-167. [8] KIM J H, MYUNG S T, SUN Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery[J]. Electrochimica Acta, 2004, 49(2): 219-227. [9] YOON T, PARK S, MUN J, et al. Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature[J]. Journal of Power Sources, 2012, 215: 312-316. [10] MANTHIRAM A, CHEMELEWSKI K,LEE E S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(4): 1339-1350. [11] PARK S B, SHIN H C, LEE W G, et al. Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides[J]. Journal of Power Sources, 2008, 180(1): 597-601. [12] DAI Y L, CAI L,WHITE R E. Capacity fade model for spinel LiMn2O4 electrode[J]. Journal of the Electrochemical Society, 2013, 160(1): A182-A190. [13] BRUTTI S, GRECO G, REALE P, et al. Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries[J]. Electrochimica Acta, 2013, 106: 483-493. [14] CHEN Y, SUN Y, HUANG X. Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: The role of oxygen vacancies and cation doping[J]. Computational Materials Science, 2016, 115: 109-116. [15] KIM J H, MYUNG S T, YOON C S, et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd-3m and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914. [16] SONG J, SHIN D W, LU Y, et al. Role of oxygen vacancies on the performance of Li[Ni0.5xMn1.5+x]O4(x=0, 0.05 and 0.08) spinel cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(15): 3101-3109. [17] BACON G E. Coherent neutron scattering amplitudes[J]. Acta Crystallographica Section A, 1972, 28(4): 357-358. [18] AMDOUNI N, ZAGHIB K, GENDRON F, et al. Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry[J]. Ionics, 2006, 12(2): 117-126. [19] LIN M X, BEN L B, SUN Y, et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials, 2015, 27(1): 292-303. [20] REED J, CEDER G. Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2[J]. Electrochemical and Solid State Letters, 2002, 5(7): A145-A148. [21] AMMUNDSEN B, ROZIERE J, ISLAM M S. Atomistic simulation studies of lithium and proton insertion in spinel lithium manganates[J]. Journal of Physical Chemistry B, 1997, 101(41): 8156-8163. [22] XU J, CHEN G. Effects of doping on the electronic properties of LiFePO4: A first-principles investigation[J]. Physica B: Condensed Matter, 2010, 405(3): 803-807. [23] WANG J, LIN W, WU B, et al. Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014, 145: 245-253. [24] YANG M C, XU B, CHENG J H, et al. Electronic, structural, and electrochemical properties of LiNixCuyMn2xyO4(0<x<0.5, 0<y<0.5) high-voltage spinel materials[J]. Chemistry of Materials, 2011, 23(11): 2832-2841. [25] SHA O, QIAO Z, WANG S, et al. Improvement of cycle stability at elevated temperature and high rate for LiNi0.5xCuxMn1.5O4 cathode material after Cu substitution[J]. Materials Research Bulletin, 2013, 48(4): 1606-1611. [26] MILEWSKA A, KONDRACKI Ł, MOLENDA M, et al. Structural, transport and electrochemical properties of LiNi0.5yCuyMn1.5O4δ spinel cathode materials[J]. Solid State Ionics, 2014, 267: 27-31. [27] LIU M H, HUANG H T, LIN C M, et al. Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries[J]. Electrochimica Acta, 2014, 120: 133-139. [28] LAFONT U, LOCATI C, BORGHOLS W J H, et al. Nanosized high voltage cathode material LiMg0.05Ni0.45Mn1.5O4: Structural, electrochemical and in situ investigation[J]. Journal of Power Sources, 2009, 189(1): 179-184. [29] WAGEMAKER M, OOMS F G B, KELDER E M, et al. Extensive migration of Ni and Mn by lithiation of ordered LiMg0.1Ni0.4Mn1.5O4 spinel[J]. Journal of the American Chemical Society, 2004, 126(41): 13526-13533. [30] OH S W, MYUNG S T, KANG H B, et al. Effects of Co doping on LiNi0.5CoxMn1.5xO4 spinel materials for 5 V lithium secondary batteries via Co-precipitation[J]. Journal of Power Sources, 2009, 189(1): 752-756. [31] LI D, ITO A, KOBAYAKAWA K, et al. Structural and electrochemical characteristics of LiNi0.5xCo2xMn1.5xO4 prepared by spray drying process and post-annealing in O2[J]. Journal of Power Sources, 2006, 161(2): 1241-1246. [32] JANG M W, JUNG H G, SCROSATI B, et al. Improved Co-substituted, LiNi0.5xCo2xMn1.5xO4 lithium ion battery cathode materials[J]. Journal of Power Sources, 2012, 220: 354-359. [33] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(SEP1): 751-767. [34] KAWAI H, NAGATA M, TUKAMOTO H, et al. A new lithium cathode LiCoMnO4: Toward practical 5 V lithium batteries[J]. Electrochemical and Solid State Letters, 1998, 1(5): 212-214. [35] KAWAI H, NAGATA M, KAGEYAMA H, et al. 5 V lithium cathodes based on spinel solid solutions Li2Co1+xMn3xO8: 1≤x≤1[J]. Electrochimica Acta, 1999, 45(1/2): 315-327. [36] JANG M W, JUNG H G, SCROSATI B, et al. Improved Co-substituted, LiNi0.5xCo2xMn1.5xO4 lithium ion battery cathode materials[J]. Journal of Power Sources, 2012, 220: 354-359. [37] LIU G, XIE H, LIU L, et al. Synthesis and electrochemical performances of spinel LiCr0.1Ni0.4Mn1.5O4 compound[J]. Materials Research Bulletin, 2007, 42(11): 1955-1961. [38] YI T F, LI C Y, ZHU Y R, et al. Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials[J]. Journal of Solid State Electrochemistry, 2009, 13(6): 913-919. [39] WANG W, LIU H, WANG Y, et al. Effects of chromium doping on performance of LiNi0.5Mn1.5O4 cathode material[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7): 2066-2070. [40] ZHONG G B, WANG Y Y, ZHANG Z C, et al. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4[J]. Electrochimica Acta, 2011, 56(18): 6554-6561. [41] YI T F, XIE Y, ZHU Y R, et al. High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries[J]. Journal of Power Sources, 2012, 211: 59-65. [42] LU C Z, FEY G T K. Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for lithium ion batteries[J]. Journal of Physics and Chemistry of Solids, 2006, 67(4): 756-761. [43] OH S W, PARK S H, KIM J H, et al. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution[J]. Journal of Power Sources, 2006, 157(1): 464-470. [44] WANG H L, SHI Z Q, LI J W, et al. Direct carbon coating at high temperature on LiNi0.5Mn1.5O4 cathode: Unexpected influence on crystal structure and electrochemical performances[J]. Journal of Power Sources, 2015, 288: 206-213. [45] NIKETIC S, COUILLARD M, MACNEIL D, et al. Improving the performance of high voltage LiMn1.5Ni0.5O4 cathode material by carbon coating[J]. Journal of Power Sources, 2014, 271: 285-290. [46] YANG T, ZHANG N, LANG Y, et al. Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(11): 4058-4064. [47] KIM J W, KIM D H, OH D Y, et al. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries[J]. Journal of Power Sources, 2015, 274: 1254-1262. [48] LI X, GUO W, LIU Y, et al. Spinel LiNi0.5Mn1.5O4 as superior electrode materials for lithium-ion batteries: Ionic liquid assisted synthesis and the effect of CuO coating[J]. Electrochimica Acta, 2014, 116: 278-283. [49] PANG Q, FU Q, WANG Y, et al. Improved electrochemical properties of spinel LiNi0.5Mn1.5O4 cathode materials by surface modification with RuO2 nanoparticles[J]. Electrochimica Acta, 2015, 152: 240-248. [50] FAN Y, WANG J, TANG Z, et al. Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries[J]. Electrochimica Acta, 2007, 52(11): 3870-3875. [51] LEE Y, KIM T Y, KIM D W, et al. Coating of spinel LiNi0.5Mn1.5O4 cathodes with SnO2 by an electron cyclotron resonance metal-organic chemical vapor deposition method for high-voltage applications in lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2015, 736: 16-21. [52] SUN Y K, YOON C S,OH I H. Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures[J]. Electrochimica Acta, 2003, 48(5): 503-506. [53] WU H, BELHAROUAK I, ABOUIMRANE A, et al. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(9): 2909-2913. [54] WEN W, YANG X, WANG X, et al. Improved electrochemical performance of the spherical LiNi0.5Mn1.5O4 particles modified by nano-Y2O3 coating[J]. Journal of Solid State Electrochemistry, 2015, 19(4): 1235-1246. [55] WANG J, YAO S, LIN W, et al. Improving the electrochemical properties of high-voltage lithium nickel manganese oxide by surface coating with vanadium oxides for lithium ion batteries[J]. Journal of Power Sources, 2015, 280: 114-124. [56] SUN H, XIA B, LIU W, et al. Significant improvement in performances of LiNi0.5Mn1.5O4 through surface modification with high ordered Al-doped ZnO electro-conductive layer[J]. Applied Surface Science, 2015, 331: 309-314. [57] ZHAO G, LIN Y, ZHOU T, et al. Enhanced rate and high-temperature performance of La0.7Sr0.3MnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium ion battery[J]. Journal of Power Sources, 2012, 215: 63-68. [58] LIN Y, YANG Y, YU R, et al. Enhanced electrochemical performances of LiNi0.5Mn1.5O4 by surface modification with superconducting YBa2Cu3O7[J]. Journal of Power Sources, 2014, 259: 188-194. [59] LEE Y, MUN J, KIM D W, et al. Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by a sol-gel method for lithium ion batteries[J]. Electrochimica Acta, 2014, 115: 326-331. [60] CHAE J S, YOON S B, YOON W S, et al. Enhanced high-temperature cycling of Li2O-2B2O3-coated spinel-structured LiNi0.5Mn1.5O4 cathode material for application to lithium-ion batteries[J]. Journal of Alloys and Compounds, 2014, 601: 217-222. [61] CHONG J, XUN S, SONG X, et al. Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries[J]. Nano Energy, 2013, 2(2): 283-293. [62] CHENG F, XIN Y, HUANG Y, et al. Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2[J]. Journal of Power Sources, 2013, 239: 181-188. [63] KIM Y, YOON Y, SHIN D. Charge-discharge characteristics of nanocrystalline Co3O4 powders via aerosol flame synthesis[J]. Solid State Ionics, 2011, 192(1): 308-312. [64] QIAO Z, SHA O, TANG Z Y, et al. Surface modification of LiNi0.5Mn1.5O4 by LiCoO2/Co3O4 composite for lithium-ion batteries[J]. Materials Letters, 2012, 87: 176-179. [65] LIU D, TROTTIER J, CHAREST P, et al. Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries[J]. Journal of Power Sources, 2012, 204(0): 127-132. [66] ZHU Y R, YI T F, ZHU R S, et al. Increased cycling stability of Li4Ti5O12-coated LiMn1.5Ni0.5O4 as cathode material for lithium-ion batteries[J]. Ceramics International, 2013, 39(3): 3087-3094. [67] YI T F, SHU J, ZHU Y R, et al. Structure and electrochemical performance of Li4Ti5O12-coated LiMn1.4Ni0.4Cr0.2O4 spinel as 5 V materials[J]. Electrochemistry Communications, 2009, 11(1): 91-94. [68] ARREBOLA J, CABALLERO A, HERNÁN L, et al. Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries[J]. Journal of the Electrochemical Society, 2007, 154(3): A178. [69] XIONG L Z, LIU W P, WU Y X, et al. Synthesis and characterization of LiNi0.49Mn1.49Y0.02O4@Ag by electroless plating technique[J]. Applied Surface Science, 2015, 328: 531-535. [70] WANG H, BEN L, YU H, et al. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures[J]. J. Mater. Chem. A, 2017, 5(2): 822-834. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||