[1] SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23 (8):947-958.
[2] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5 (3):5884-5901.
[3] ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16 (4):168-177.
[4] ZU C X, LI H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4 (8):2614-2624.
[5] XIANG X D, ZHANG K, CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27 (36):5343-5364.
[6] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114 (23):11636-11682.
[7] HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides:Powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8 (1):81-102.
[8] BIE X F, KUBOTA K, HOSAKA T, et al. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries[J]. Journal of Power Sources, 2018, 28 (378):322-330.
[9] DAHBI M, KISO M, KUBOTA K, et al. Synthesis of hard carbon from argan shells for Na-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (20):9917-9928.
[10] ALCÁNTARA R, JARABA M, LAVELA P, et al. NiCo2O4 spinel:First report on a transition metal oxide for the negative electrode of sodium-ion batteries[J]. Chemistry of Materials, 2002, 14 (7):2847-2848.
[11] SU D W, AHN H J, WANG G X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance[J]. Chemical Communications, 2013, 49 (30):3131-3133.
[12] LI Z, DING J, MITLIN D. Tin and tin compounds for sodium ion battery anodes:Phase transformations and performance[J]. Accounts of Chemical Research, 2015, 48 (6):1657-1665.
[13] DING J, LI Z, WANG H, et al. Sodiation vs. lithiation phase transformations in a high rate-high stability SnO2 in carbon nanocomposite[J]. Journal of Materials Chemistry A, 2015, 3 (13):7100-7111.
[14] SU D, WANG C, AHN H, et al. Octahedral tin dioxide nanocrystalsm as high capacity anode materials for Na-ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15 (30):12543-12550.
[15] WANG Y, SU D, WANG C, et al. SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries[J]. Electrochemistry Communications, 2013, 29 (1):8-11.
[16] ZHANG Y, XIE J, ZHANG S, et al. Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries[J]. Electrochimica Acta, 2015, 151 (1):8-15.
[17] PEI L, JIN Q, ZHU Z, et al. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene[J]. Nano Research, 2015, 8 (1):184-192.
[18] LI Z, DING J, WANG H, et al. High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation[J]. Nano Energy, 2015, 15 (2):369-378.
[19] LIU Y C, ZHANG N, YU C, et al. MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries[J]. Nano Letters, 2016, 16 (5):3321-3328.
[20] ZHANG N, HAN X P, LIU Y C, et al. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2015, 5 (5):1401123.
[21] HARIHARAN S, BALARY P. α-MoO3:A high performance anode material for sodium-ion batteries[J]. Electrochemistry Communications, 2013 (1):5-9.
[22] HU M, JIANG Y, SUN W, et al. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6 (21):19449-19455.
[23] ZHOU X, LIU X, XU Y, et al. An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries[J]. Journal of Physical Chemistry C, 2014, 118 (41):23527-23534.
[24] NAM D H, HONG K S, LIM S J, et al. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries[J]. Small, 2015, 11 (24):2885-2892.
[25] QU B, MA C, JI G, et al. Layered SnS2-reduced graphene oxide composite:A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014, 26 (23):3854-3859.
[26] ZHOU T, PANG W K, ZHANG C, et al. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS[J]. ACS Nano, 2014, 8 (8):8323-8333.
[27] PRIKHODCHENKO P V, YU D Y W, BATABYAL S K, et al. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2 (22):8431-8437.
[28] DUTTA P K, SEN U K, MITRA S. Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode[J]. RSC Advances, 2014, 4 (81):43155-43159.
[29] WU L, LU H, XIAO L, et al. A tin (Ⅱ) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2 (39):16424-16428.
[30] ZHANG Y, ZHU P, HUANG L, et al. Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Advanced Functional Materials, 2015, 25 (3):481-489.
[31] ZHAO Y, GUO B B, YAO Q Q, et al. A rational microstructure design of SnS2-carbon composites for superior sodium storage performance[J]. Nanoscale, 2018, 10 (17):7999-8008.
[32] ZHU C, MU X, VAN AKEN P A, et al. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage[J]. Angewandte Chemie International Edition, 2014, 53 (8):2152-2156.
[33] LIU Y C, ZHANG N, KANG H T, et al. WS2 nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry-A European Journal, 2015, 21 (33):11878-11884.
[34] FAN H H, LI H H, GUO J Z, et al. Target construction of ultrathin graphitic carbon encapsulated FeS hierarchical microspheres featuring superior low-temperature lithium/sodium storage properties[J]. Journal of Materials Chemistry A, 2018, 6 (17):7997-8005.
[35] HOU B H, WANG Y Y, GUO J Z, et al. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries[J]. Nanoscale, 2018, 10 (19):9218-9225.
[36] TAO H W, ZHOU M, WANG K L, et al. N/S co-doped carbon coated nickel sulfide as a cycle-stable anode for high performance sodium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 754 (25):199-206.
[37] HOU H, JING M, HUANG Z, et al. One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (34):19362-19369.
[38] ZHAO Y, MANTHIRAM A. Amorphous Sb2S3 embedded in graphite:A high-rate, long-life anode material for sodium-ion batteries[J]. Chemical Communications, 2015, 51 (67):13205-13208.
[39] WANG S, YUAN S, YIN Y B, et al. Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries[J]. Particle & Particle Systems Characterization, 2016, 33 (8):493-499.
[40] ZHU Y, NIE P, SHEN L, et al. High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries[J]. Nanoscale, 2015, 7 (7):3309-3315.
[41] KIM Y U, LEE C K, SOHN H J, et al. Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries[J]. Journal of the Electrochemical Society, 2004, 151 (6):A933-A937.
[42] LI W J, CHOU S L, WANG J Z, et al. A new, cheap, and productive FeP anode material for sodium-ion batteries[J]. Chemical Communications, 2015, 51 (15):3682-3685.
[43] LI W J, YANG Q R, CHOU S L, et al. Cobalt phosphide as a new anode material for sodium storage[J]. Journal of Power Sources, 2015, 294 (30):627-632.
[44] WANG X J, CHEN K, WANG G, et al. Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries[J]. ACS Nano, 2017, 11 (11):11602-11616.
[45] ZHANG K, PARK M, ZHANG J, et al. Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets:promising anode material with high rate capability and long cycle life for sodium-ion batteries[J]. Nano Research, 2017, 10 (12):4337-4350.
[46] GE X L, LI Z Q, YIN L W. Metal-organic frameworks derived porous core/shell CoP@C polydedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery[J]. Nano Energy, 2017, 32 (1):117-124.
[47] WU T, ZHANG S P, HE Q M, et al. Assembly of multifunctional Ni2P/NiS0.66 heterostructures and their superstructure for high lithium and sodium anodic performance[J]. ACS Applied Materials & Interfaces, 2017, 9 (34):28549-28557.
[48] FAN M P, CHEN Y, XIE Y H, et al. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes[J]. Advanced Functional Materials, 2016, 26 (28):5019-5027.
[49] ZHAO F P, HAN N, HUANG W J, et al. Nanostructured CuP2/C composites as high performance anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (43):21754-21759.
[50] QIAN J, XIONG Y, CAO Y, et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries[J]. Nano Letters, 2014, 14 (4):1865-1869.
[51] LIU J, KOPOLD P, WU C, et al. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries[J]. Energy & Environmental Science, 2015, 8 (12):3531-3538. |