储能科学与技术 ›› 2019, Vol. 8 ›› Issue (1): 47-57.doi: 10.12028/j.issn.2095-4239.2018.0114
刘永坤1,2,3, 姚菊明1,2,4, 卢秋玲4, 黄铮4, 江国华1,2,3,4
收稿日期:
2018-07-05
修回日期:
2018-08-20
出版日期:
2019-01-01
发布日期:
2018-08-28
通讯作者:
江国华,教授,研究方向为有机-无机纳米复合材料的制备与应用,E-mail:ghjiang_cn@zstu.edu.cn。
作者简介:
刘永坤(1991-),男,博士研究生,研究方向为碳纤维基电极材料的制备和性能研究,E-mail:283029854@qq.com
基金资助:
LIU Yongkun1,2,3, YAO Juming1,2,4, LU Qiuling4, HUANG Zheng4, JIANG Guohua1,2,3,4
Received:
2018-07-05
Revised:
2018-08-20
Online:
2019-01-01
Published:
2018-08-28
摘要: 目前,环境友好的清洁能源的开发和设计是能源领域的研究重点。超级电容器是一种新型的储能器件,具有快速充放电的特点,在储能领域有很好的应用潜力。但是能量密度的不足,在一定程度上限制超级电容器的发展。另一方面,柔性电子器件的兴起要求储能器件必须也具备柔性的特质。因此,如何开发一个高能量密度,又同时保有高功率密度、长循环寿命特性的柔性超级电容器是研究人员致力解决的问题。目前常用的方法是将具有高理论比电容的赝电容材料和碳纤维柔性基底结合。本文结合本课题组在碳纤维基柔性超级电容器方面的探索,简单介绍超级电容器的存储机理和系统分类,综述了碳纤维基柔性超级电容器的研究情况和相应的柔性电极的制备方法。最后,讨论了碳纤维基柔性超级电容器在实际应用中的相关前景和挑战。
中图分类号:
刘永坤, 姚菊明, 卢秋玲, 黄铮, 江国华. 碳纤维基柔性超级电容器电极材料的应用进展[J]. 储能科学与技术, 2019, 8(1): 47-57.
LIU Yongkun, YAO Juming, LU Qiuling, HUANG Zheng, JIANG Guohua. Progress in carbon fibers based flexible electrodes for supercapacitors[J]. Energy Storage Science and Technology, 2019, 8(1): 47-57.
[1] WEI X J, WAN S G, JIANG X Q, et al. Peanut-shell-like porous carbon from nitrogen-containing poly-n-phenylethanolamine for high performance supercapacitor[J]. ACS Appl. Mater. Interfaces, 2015, 7(40):22238-22245. [2] XU K B, LI W Y, LIU Q, et al. Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors[J]. J. Mater. Chem. A, 2014, 2(13):4795-4802. [3] ZHANG Y D, LIN B P, SUN Y, et al. Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Adv., 2015, 5(72):58100-58106. [4] ZHOU H H, ZHAI H J, HAN G Y. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes[J]. J. Power Sources, 2016, 323:125-133. [5] RAJ C J, KIM B C, CHO W J, et al. Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film[J]. ACS Appl. Mater. Interfaces, 2015, 7(24):13405-13414. [6] ZHAI Y P, DOU Y Q, ZHAO D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Adv. Mater., 2011, 23(42):4828-4850. [7] WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2012, 41(2):797-828. [8] LIM L, LIU Y S, LIU W W, et al. All-in-one graphene based composite fiber:Toward wearable supercapacitor[J]. ACS Appl. Mater. Interfaces, 2017, 9(45):39576-39583. [9] XU C, LI Z H, YANG C, et al. An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors[J]. Adv. Mater., 2016, 28(21):4105-4110. [10] DONG L B, XU C J, LI Y, et al. Flexible electrodes and supercapacitors for wearable energy storage:A review by category[J]. J. Mater. Chem. A, 2016, 4(13):4659-4685. [11] WEN L, LI F, CHENG H M, Carbon nanotubes and graphene for flexible electrochemical energy storage:From materials to devices[J]. Adv. Mater., 2016, 28(22):4306-4337. [12] WANG X F, LU X H, LIU B, et al. Flexible energy-storage devices:Design consideration and recent progress[J]. Adv. Mater., 2014, 26(28):4763-4782. [13] YU D D, WANG H, YANG J, et al. Dye wastewater clean up by graphene composite paper for tailorable supercapacitors[J]. ACS Appl. Mater. Interfaces, 2017, 9(25):21298-21306. [14] RADHAMANI A V, SHAREEF K M, RAMACHANDA RAO M S. ZnO@MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitors[J]. ACS Appl. Mater. Interfaces, 2016, 8(44):30531-30542. [15] LEE G, SEO Y D, JANG J, ZnO quantum dot-decorated carbon nanofibers derived from electrospun ZIF-8/PVA nanofibers for high-performance energy storage electrodes[J]. Chem. Commun., 2017, 53(83):11441-11444. [16] WANG X F, LIU B, LIU R, et al. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system[J]. Angew. Chem. Int. Ed., 2014, 53(7):1849-1853. [17] CHEN H, HU L F, CHEN M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J]. Adv. Funct. Mater., 2014, 24(7):934-942. [18] SHEN L F, WANG J, XU G Y, et al. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors[J]. Adv. Energy Mater., 2015, 5(3):doi:10.1002/aenm.201400977. [19] CHEE W K, LIM H N, HARRISON I, et al. Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration[J]. Electrochim. Acta, 2015, 157:88-94. [20] WU S X, HUI K S, HUI K N, et al. Electrostatic-induced assembly of graphene-encapsulated carbon@nickel-aluminum layered double hydroxide core-shell spheres hybrid structure for high-energy and high-power-density asymmetric supercapacitor[J]. ACS Appl. Mater. Interfaces, 2017, 9(2):1395-1406. [21] CHOI C, SIM H J, SPINKS G M, et al. Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor[J]. Adv. Energy Mater., 2016, 6(5):doi:10.1002/aenm.201502119. [22] JOST K, DURKIN D P, HAVERHALS L M, et al. Natural fiber welded electrode yarns for knittable textile supercapacitors[J]. Adv. Energy Mater., 2015, 5(4):doi:10.1002/aenm.201401286. [23] KIM B C, HONG J Y, WALLACE G G, et al. Recent progress in flexible electrochemical capacitors:Electrode materials, device configuration, and functions[J]. Adv. Energy Mater., 2015, 5(22):doi:10.1002/aenm.201500959. [24] TANG J Y, YUAN P, CAI C L, et al. Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage[J]. Adv. Energy Mater., 2016, 6(19):doi:10.1002/aenm.201600813. [25] VLAD A, SINGH N, GALANDE C, et al. Design considerations for unconventional electrochemical energy storage architectures[J]. Adv. Energy Mater., 2015, 5(19):doi:10.1002/aenm.201402115. [26] PENG L L, ZHU Y, LI H S, et al. Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices[J]. Small, 2016, 12(45):6183-6199. [27] XUE Q, SUN J F, HUANG Y, et al. Recent progress on flexible and wearable supercapacitors[J]. Small, 2017, 13(45):doi:10.1002/smll.201701827. [28] CAI J G, LV C, WATANABE A. Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system[J]. Nano Energy, 2016, 30:790-800. [29] LI F W, CHEN J T, WANG X S, et al. Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes[J]. Adv. Funct. Mater., 2015, 25(29):4601-4606. [30] WENG W, WU Q Q, SUN Q, et al. Failure mechanism in fiber-shaped electrodes for lithium-ion batteries[J]. J. Mater. Chem. A, 2015, 3(20):10942-10948. [31] CHEN Y, LU S T, WU X H, et al. Flexible carbon nanotube-graphene/sulfur composite film:Free-standing cathode for high-performance lithium/sulfur batteries[J]. J. Phy. Chem. C, 2015, 119(19):10288-10294. [32] LIU Y, ZHOU J Y, CHEN L L, et al. Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors[J]. ACS Appl. Mater. Interfaces, 2015, 7(42):23515-23520. [33] WANG W, LIU W Y, ZENG Y X, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Adv. Mater., 2015, 27(23):3572-3578. [34] WEN J, LI S Z, ZHOU K, et al. Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes[J]. J. Power Sources, 2016, 324:325-333. [35] LAI F L, MIAO Y E, HUANG Y P, et al. Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core-sheath nanostructures for high-performance supercapacitors[J]. J. Phy. Chem. C, 2015, 119(24):13442-13450. [36] WU Y, RAN F, Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors[J]. J. Power Sources, 2017, 344:1-10. [37] LEI Q, SONG H H, CHEN X H, et al. Effects of graphene oxide addition on the synthesis and supercapacitor performance of carbon aerogel particles[J]. RSC Adv., 2016, 6(47):40683-40690. [38] REDONDO E, CARRETERO GONZALEZ J, GOIKOLEA E, et al. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits[J]. Electrochim. Acta, 2015, 160:178-184. [39] ZHANG L L, ZHOU R, ZHAO X S. Graphene-based materials as supercapacitor electrodes[J]. J. Mater. Chem., 2010, 20(29):5983-5992. [40] TANG L, DUAN F, CHEN M Q. Silver nanoparticles decorated polyaniline/multiwalled super-short carbon nanotubes nanocomposite for supercapacitor application[J]. RSC Adv., 2016, 6(69):65012-65019. [41] XIA X H, TU J P, MAI Y J, et al. Graphene sheet/porous NiO hybrid film for supercapacitor applications[J]. Chem-Eur J., 2011, 17(39):10898-10905. [42] TIAN X Q, CHENG C M, QIAN L, et al. Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor[J]. J. Mater. Chem., 2012, 22(16):8029-8035. [43] GAO Z H, ZHANG H, CAO G P, et al. Spherical porous VN and NiOx, as electrode materials for asymmetric supercapacitor[J]. Electrochim. Acta, 2013, 87(1):375-380. [44] LIU Y C, MIAO X F, FANG J H, et al. Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor[J]. ACS Appl. Mater. Interfaces, 2016, 8(8):5251-5260. [45] FOO C Y, SUMBOJA A, TAN D J H, et al. Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices[J]. Adv. Energy Mater., 2015, 4(12):3412-3420. [46] SARAVANAKUMAR B, PURUSHOTHAMAN K K, MURALIDHARAN G. High performance supercapacitor based on carbon coated V2O5, nanorods[J]. J. Electroanal. Chem., 2015, 758:111-116. [47] ZHANG Y F, JING X Y, WANG Q S, et al. Three-dimensional porous V2O5 hierarchical spheres as a battery-type electrode for a hybrid supercapacitor with excellent charge storage performance[J]. Dalton T., 2017, 46(43):15048-15058. [48] LIU T Y, FINN L, YU M H, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Lett., 2014, 14(5):2522-2527. [49] HUANG Z H, SONG Y, XU X X, et al. Ordered polypyrrole nanowire arrays grown on carbon cloth substrate for high performance pseudocapacitor electrode[J]. ACS Appl. Mater. Interfaces, 2015, 7(45):25506-25513. [50] BORA C, SARKAR C, MOHAN K J, et al. Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells[J]. Electrochim. Acta, 2015, 157:225-231. [51] PATIL S S, DUBAL D P, DEONIKAR V G, et al. Fern-like rGO/BiVO4 hybrid nanostructures for high-energy symmetric supercapacitor[J]. ACS Appl. Mater. Interfaces, 2016, 8(46):31602-31610. [52] ZUO W H, LI R Z, ZHOU C, et al. Battery-supercapacitor hybrid devices:Recent progress and future prospects[J]. Adv. Sci., 2017, 4(7):doi:10.1002/advs.201600539. [53] ZHANG C Q, CHEN Q D, ZHAN H B. Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance[J]. ACS Appl. Mater. Interfaces, 2016, 8(35):22977-22987. [54] LIU Z M, ZHANG H Y, YANG Q, et al. Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte[J]. Electrochim. Acta, 2018:doi:10.1016/j.electacta.2018.04.212. [55] LV T, YAO Y, LI N, et al. Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites[J]. Angew. Chem. Int. Ed., 2016, 55(32):9191-9195. [56] ZHOU W J, ZHOU K, LIU X J, et al. Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers[J]. J. Mater. Chem. A, 2014, 2(20):7250-7255. [57] LIU B, TAN D S, WANG X F, et al. Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect[J]. Small, 2013, 9(11):1998-2004. [58] TAO J Y, LIU N S, MA WEN Z, et al. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure[J]. Sci. Rep., 2013, 7459(3):doi:10.1038/srepo2286. [59] LU X H, YU M H, WANG G M, et al. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors[J]. Adv. Mater., 2013, 25(2):267-272. [60] WANG Z L, ZHU Z L, QIU Q H, et al. High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core-shell nanorods//specially reduced graphene oxide[J]. J. Mater. Chem. C, 2014, 2(7):1331-1336. [61] XIAO J W, WAN L, YANG S H, et al. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors[J]. Nano Lett., 2014, 14(2):831-838. [62] ZHANG L S, DING Q W, HUANG Y P, et al. Flexible hybrid membranes with Ni(OH)2 nanoplatelets vertically grown on electrospun carbon nanofibers for high-performance supercapacitors[J]. ACS Appl. Mater. Interfaces, 2015, 7(40):22669-22677. [63] LU X F, CHEN X Y, ZHOU W, et al. α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors[J]. ACS Appl. Mater. Interfaces, 2015, 7:14843-14850. [64] WANG D W, LIU S J, JIAO L, et al. A smart bottom-up strategy for the fabrication of porous carbon nanosheets containing rGO for high-rate supercapacitors in organic electrolyte[J]. Electrochim. Acta, 2017, 252:109-118. [65] KEUM K, LEE G, LEE H C, et al. Wire-shaped supercapacitors with organic electrolytes fabricated via layer-by-layer assembly[J]. ACS Appl. Mater. Interfaces, 2017, doi:10.1021/acsami.8b07113. [66] SONG Y, LIU T Y, YAO B, et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small, 2017, 13(16):doi:10.1002/smll.201700067. [67] LI Y, XU J, FENG T, et al. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors[J]. Adv. Func. Mater., 2017, 27(14):doi:10.1002/adfm.201606728. [68] JABEEN N, HUSSAIN A, XIA Q Y, et al. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays[J]. Adv. Mater., 2017, 29(32):doi:10.1002/adma.201700804. [69] HUANG J, WEI J C, XIAO Y B, et al. When Al-doped cobalt sulfide nanosheets meet nickel nanotube arrays:A highly efficient and stable cathode for asymmetric supercapacitors[J]. ACS Nano, 2018, 12:3030-3041. [70] HUANG Z H, SONG Y, FENG D Y, et al. High mass loading MnO2 with hierarchical nanostructures for supercapacitors[J]. ACS Nano, 2018, 12:3557-3567. [71] CHEN C, CAO J, LU Q, et al. Foldable all-solid-state supercapacitors integrated with photodetectors[J]. Adv. Funct. Mater., 2017, 27:doi:10.1002/adfm.201604639. [72] KONG D Z, REN W N, CHENG C W, et al. Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor[J]. ACS Appl. Mater. Interfaces, 2015, 7(38):21334-21346. [73] CHEN W, XIA C, HUSAM N A. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors[J]. ACS Nano, 2014, 8(9):9531-9541. [74] LIU Y K, LU Q L, HUANG Z, et al. Electrodeposition of Ni-Co-S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors[J]. J. Alloys Compd., 2018, 762:301-311. [75] DU J, ZHENG C, LV W, et al. A three-layer all-in-one flexible graphene film used as an integrated supercapacitor[J]. Adv. Mater. Interfaces, 2017, 4:doi:10.1002/admi.201700004. [76] XIE B, WANG Y, LAI W, et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components[J]. Nano Energy, 2016, 26:276-285. [77] XU Z, GAO C. Graphene in macroscopic order:Liquid crystals and wet-spun fibers[J]. Acc. Chem. Res., 2014, 47(4):1267-1276. [78] LI Z, XU Z, LIU Y J, et al. Multifunctional non-woven fabrics of interfused graphene fibers[J]. Nat. Commun., 2016, 7:doi:10.1038/ncommsl13684. [79] CHEN H, JIANG G H, YU W J, et al. Electrospun carbon nanofibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material[J]. J. Mater. Chem. A, 2016, 4(16):5958-5964. [80] SUN S Q, JIANG G H, LIU Y K, et al. Growth of MnO2, nanoparticles on hybrid carbon nanofibers for flexible symmetrical supercapacitors[J]. Mater. Lett., 2017, 197:35-37. [81] LIU Y K, JIANG G H, SUN S Q, et al. Growth of NiCo2S4 nanotubes on carbon nanofibers for high performance flexible supercapacitors[J]. J. Electroanal. Chem., 2017, 804:212-219. [82] LIU Y K, JIANG G H, SUN S Q, et al. Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors[J]. J. Alloys Compd., 2018, 731:560-568. [83] LI X Y, WANG J, ZHAO Y P, et al. Wearable solid-state supercapacitors operating at high working voltage with a flexible nanocomposite electrode[J]. ACS Appl. Mater. Interfaces, 2016, 8(39):25905-25914. [84] QIN T F, PENG S L, HAO J X, et al. Flexible and wearable all-solid-state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode[J]. Adv. Energy Mater., 2017, 7(20):doi:10.1002/aenm.201700409. [85] AI Y F, LOU Z, LI L, et al. Meters-long flexible CoNiO2-nanowires@carbon-fibers based wire-supercapacitors for wearable electronics[J]. Adv. Mater. Technol., 2016, 1(8):doi:10.1012/admt. 201600142 [86] GUO R S, CHEN J T, YANG B J, et al. In-plane micro-supercapacitors for an integrated device on one piece of paper[J]. Adv. Func. Mater, 2017, 27(43):doi:10.1002/adfm.201702394. [87] HUANG Y, ZHONG M, SHI F K, et al. A polyacrylamide hydrogel electrolyte enabled intrinsically 1000% stretchable and 50% compressible supercapacitor[J]. Angew. Chem. Int. Ed., 2017, 56(31):9141-9145. |
[1] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[2] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
[3] | 田玉玉, 刘静, 宋雪峰, 邱羽, 赵丽萍, 张鹏, 孙燕亭, 高濂. PPy-MoS2 多孔网络柔性电极的电化学行为动力学分析[J]. 储能科学与技术, 2022, 11(4): 1141-1148. |
[4] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[5] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[6] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[7] | 岳博文, 佟佳欢, 刘玉文, 霍锋. 离子液体电解液的模拟计算方法及应用[J]. 储能科学与技术, 2022, 11(3): 897-911. |
[8] | 韩雪, 邓伟, 周旭峰, 刘兆平. 石墨烯在储能领域应用的专利分析[J]. 储能科学与技术, 2022, 11(1): 335-349. |
[9] | 乔亮波, 张晓虎, 孙现众, 张熊, 马衍伟. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. |
[10] | 王凯, 侯朝霞, 李思瑶, 屈晨滢, 王悦, 孔佑健. 可拉伸全固态超级电容器的研究进展[J]. 储能科学与技术, 2021, 10(3): 887-895. |
[11] | 陈帅, 陈灵, 江浩. 氮掺杂无定形氧化钒纳米片阵列用于快充型准固态超级电容器[J]. 储能科学与技术, 2021, 10(3): 945-951. |
[12] | 毕志杰, 赵宁, 郭向欣. 基于氧化钨和普鲁士蓝的可变色超级电容器[J]. 储能科学与技术, 2021, 10(3): 952-957. |
[13] | 凤睿, 卢海, 刘心毅, 李浩, 李祥元. 正负极质量非对称设计对超级电容器性能的影响研究[J]. 储能科学与技术, 2021, 10(2): 491-496. |
[14] | 李向东, 廉睿, 吴佳美, 唐良辉, 乔志军, 阮殿波. 基于Fluent的超级电容器模组充放电循环的热仿真分析[J]. 储能科学与技术, 2021, 10(2): 732-737. |
[15] | 陈雪龙, 张 希, 许传华, 于学文, 阮殿波, 乔志军, 汪 俊, 王朝阳. 大容量动力型超级电容器存储性能[J]. 储能科学与技术, 2021, 10(1): 198-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||