储能科学与技术 ›› 2019, Vol. 8 ›› Issue (3): 583-594.doi: 10.12028/j.issn.2095-4239.2019.0064
金周, 詹元杰, 起文斌, 田丰, 赵俊年, 武怿达, 张华, 贲留斌, 俞海龙, 刘燕燕, 黄学杰
收稿日期:
2019-04-19
出版日期:
2019-05-01
发布日期:
2019-05-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池相关性能及材料,E-mail:xjhuang@jphy.ac.cn
作者简介:
金周(1991-),男,博士研究生,研究方向为锂离子电池负极材料,E-mail:jinzhou15@mails.ucas.ac,cn
基金资助:
JIN Zhou, ZHAN Yuanjie, QI Wenbing, TIAN Feng, ZHAO Junnian, WU Yida, ZHANG Hua, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie
Received:
2019-04-19
Online:
2019-05-01
Published:
2019-05-01
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2019年2月1日至2019年3月31日上线的锂电池研究论文,共有2208篇,选择其中100篇加以评论。正极材料主要研究了层状材料的结构演变及表面包覆对层状和尖晶石材料的影响。硅基复合负极材料研究侧重于嵌脱锂机理以及SEI界面层,金属锂负极的研究侧重于通过集流体、三维电极和表面覆盖层的设计以及电解液添加剂来提高其循环性能,并与锂硫和固态电池应用结合研究。固态电解质侧重于制备方法和离子输运机理研究,电解液添加剂的研究目标是提高电池充电至高电压时的稳定性。全固态电池的重点在于电极和电池设计和工艺研究。除了以材料为主的研究之外,针对电池分析、理论模拟和电池模型的研究论文也有多篇。
中图分类号:
金周, 詹元杰, 起文斌, 田丰, 赵俊年, 武怿达, 张华, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2019.02.01—2019.03.31)[J]. 储能科学与技术, 2019, 8(3): 583-594.
JIN Zhou, ZHAN Yuanjie, QI Wenbing, TIAN Feng, ZHAO Junnian, WU Yida, ZHANG Hua, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2019 to Mar. 31, 2019)[J]. Energy Storage Science and Technology, 2019, 8(3): 583-594.
[1] RASTGOO-DEYLAMI M, JAVANBAKHT M, OMIDVAR H. Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2[J]. Solid State Ionics, 2019, 331:74-88. [2] RAN Q W, ZHAO H Y, WANG Q, et al. Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature[J]. Electrochimica Acta, 2019, 299:971-978. [3] KIM U H, KUO L Y, KAGHAZCHI P, et al. Quaternary layered Nirich NCMA cathode for lithium-ion batteries[J]. ACS Energy Letters, 2019, 4(2):576-582. [4] LI W, ASL H Y, XIE Q, et al. Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(13):5097-5101. [5] DONG H, LI S M, LIU H, et al. Facile synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 with enlarged exposed active planes for Li-ion batteries[J]. Ionics, 2019, 25(2):827-834. [6] SONG H J, JANG S H, AHN J, et al. Artificial cathode-electrolyte interphases on nickel-rich cathode materials modified by silyl functional group[J]. Journal of Power Sources, 2019, 416:1-8. [7] SUN Z H, LI Z, GAO L F, et al. Grafting benzenediazonium tetrafluoroborate onto LiNixCoyMnzO2 materials achieves subzerotemperature high-capacity lithium-ion storage via a diazonium softchemistry method[J]. Advanced Energy Materials, 2019, 9(6):doi:https://doi.org/10.1002/aenm.201802946. [8] TANG W J, CHEN Z X, XIONG F, et al. An effective etching-induced coating strategy to shield Li0.80Co0.1Mn0.1O2 electrode materials by LiAlO2[J]. Journal of Power Sources, 2019, 412:246-254. [9] CHEN C, XU M, ZHANG K, et al. Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application[J]. Electrochimica Acta, 2019, 300:437-444. [10] JI H, URBAN A, KITCHAEV D A, et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries[J]. Nature Communications, 2019, 10:doi:https://doi.org/10.1038/s41467-019-08490-w. [11] HONG J, GENT W E, XIAO P, et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides[J]. Nature Materials, 2019, 18(3):256-265. [12] LIU J F, CHEN Y F, XU J, et al. Effectively enhanced structural stability and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials via poly-(3,4-ethylenedioxythiophene)-in situ coated for high voltage Li-ion batteries[J]. RSC Advances, 2019, 9(6):3081-3091. [13] MA Y, CHEN K, MA J, et al. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries[J]. Energy & Environmental Science, 2019, 12(1):273-280. [14] EMANI S, LIU C H, ASHURI M, et al. Li3BN2 as a transition metal free, high capacity cathode for Li-ion batteries[J]. ChemElectroChem, 2019, 6(2):320-325. [15] BHARGAV A, CHANG C H, FU Y, et al. Rationally designed highsulfur-content polymeric cathode material for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(6):6136-6142. [16] CHEN Q L, ZHENG H F, YANG Y F, et al. Ion-and electron-conductive buffering layer-modified Si film for use as a high-rate long-term lithiumion battery anode[J]. ChemSusChem, 2019, 12(1):252-260. [17] HARUTA M, DOI T, INABA M. Oxygen-content dependence of cycle performance and morphology changes in amorphous-SiOx thinfilm negative electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(2):A258-A263. [18] HUA Q, DAI D, ZHANG C, et al. Transformation of sludge Si to nano-Si/SiOx structure by oxygen inward diffusion as precursor for high performance anodes in lithium ion batteries[J]. Nanoscale Research Letters, 2018, 13:doi:10.1186/s11671-018-2549-7. [19] PAN K, ZOU F, CANOVA M, et al. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries[J]. Journal of Power Sources, 2019, 413:20-28. [20] ZHANG W, LIU Y, LI W, et al. Au nanocrystals decorated TiO2 nanotube arrays as anode material for lithium ion batteries[J]. Applied Surface Science, 2019, 476:948-958. [21] LI P, HWANG J Y, SUN Y K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J]. ACS Nano, 2019, 13(2):2624-2633. [22] CHANG W J, KIM S H, HWANG J, et al. Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries[J]. Nature Communications, 2018, 9:doi:https://doi.org/10.1038/s41467-018-05986-9. [23] YAN C, HUANG T, ZHENG X, et al. Waterborne polyurethane as a carbon coating for micrometre-sized silicon-based lithium-ion battery anode material[J]. Royal Society Open Science, 2018, 5(8):doi:https://doi.org/10.1098/rsos.180311. [24] KIM D, LI N, SHEEHAN C J, et al. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A·g(-1)[J]. Nanoscale, 2018, 10(16):7343-7351. [25] SHEN B H, VEITH G M, TENHAEFF W E. Silicon surface tethered polymer as artificial solid electrolyte interface[J]. Scientific Reports, 2018, 8:doi:https://doi.org/10.1038/s41598-018-30000-z. [26] DONG K, MARKOTTER H, SUN F, et al. In situ and operando tracking of microstructure and volume evolution of silicon electrodes by using synchrotron X-ray imaging[J]. ChemSusChem, 2019, 12(1):261-269. [27] LIANG Z, YAN K, ZHOU G, et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation[J]. Science Advances, 2019, 5(3):doi:10.1126/sciadv.aau5655. [28] LIU S, DENG L, GUO W, et al. Bulk nanostructured materials design for fracture-resistant lithium metal anodes[J]. Advanced Materials (Deerfield Beach, Fla.), 2019:e1807585-e1807585. [29] SHEN X, LI Y, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10:doi:https://doi.org/10.1038/s41467-019-08767-0. [30] LIU S, XIA X, DENG S, et al. In situ solid electrolyte interphase from spray quenching on molten Li:A new way to construct highperformance lithium-metal anodes[J]. Advanced Materials, 2019, 31(3):doi:https://doi.org/10.1002/adma.201806470. [31] CHEN K H, SANCHEZ A J, KAZYAK E, et al. Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(4):doi:https://doi.org/10.1002/aenm.201802534. [32] SUN Y P, ZHAO Y, WANG J W, et al. A novel organic "Polyurea" thin film for ultralong-life lithium-metal anodes via molecularlayer deposition[J]. Advanced Materials, 2019, 31(4):https://doi. org/10.1002/adma.201806541. [33] LIANG X, WANG J, ZHANG S, et al. Fabrication of uniform Siincorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries[J]. Applied Surface Science, 2019, 476:28-35. [34] SATO S, UNEMOTO A, IKEDA T, et al. Carbon-rich active materials with macrocyclic nanochannels for high-capacity negative electrodes in all-solid-state lithium rechargeable batteries[J]. Small, 2016. 12(25):3381-3387. [35] GAO P, CHEN Z, ZHAO-KARGER Z, et al. A porphyrin complex as a self-conditioned electrode material for high-performance energy storage[J]. Angewandte Chemie-International Edition, 2017, 56(35):10341-10346. [36] BUANNIC L, NAVIROJ M, MILLER S M, et al. Dense freezecast Li7La3Zr2O12 solid electrolytes with oriented open porosity and contiguous ceramic scaffold[J]. Journal of the American Ceramic Society, 2019, 102(3):1021-1029. [37] KRAUSKOPF T, HARTMANN H, ZEIER W G, et al. Towards a fundamental understanding of the lithium metal anode in solid state batteries-An electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15):14463-14477 [38] LEWIS J A, CORTES F J Q, BOEBINGER M G, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure[J]. ACS Energy Letters, 2019, 4(2):591-599. [39] BERLINER M D, MCGILL B C, MAJEED M, et al. Electrochemical kinetics of lithium plating and stripping in solid polymer electrolytes:Pulsed voltammetry[J]. Journal of the Electrochemical Society, 2019, 166(2):A297-A304. [40] PAIK B, WOLCZYK A. Lithium imide (Li2NH) as a solid-state electrolyte for electrochemical energy storage applications[J]. Journal of Physical Chemistry C, 2019, 123(3):1619-1625. [41] FROBOESE L, VAN DER SICHEL J F, LOELLHOEFFEL T, et al. Effect of microstructure on the ionic conductivity of an all solid-state battery electrode[J]. Journal of the Electrochemical Society, 2019, 166(2):A318-A328. [42] TIAN X L, YI Y K, YANG P, et al. High-charge density polymerized ionic networks boosting high ionic conductivity as quasi-solid electrolytes for high-voltage batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(4):4001-4010. [43] NAIR J R, COLO F, KAZZAZI A, et al. Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Libased polymer batteries[J]. Journal of Power Sources, 2019, 412:398-407. [44] SWAMY T, CHEN X, CHIANG Y M. Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes[J]. Chemistry of Materials, 2019, 31(3):707-713. [45] DOMI Y, USUI H, YAMAGUCHI K, et al. Silicon-based anodes with long cycle life for lithium-ion batteries achieved by significant suppression of their volume expansion in ionic-liquid electrolyte[J]. ACS Applied Materials & Interfaces, 2019, 11(3):2950-2960. [46] BOLLOJU S, CHIOUC Y, VIKRAMADITYA T, et al. (Pentafluorophenyl) diphenylphosphine as a dual-functional electrolyte additive for LiNi0.5Mn1.5O4 cathodes in high-voltage lithium-ion batteries[J]. Electrochimica Acta, 2019, 299:663-671. [47] TORNHEIM A, GARCIA J C, SAHORE R, et al. Decomposition of phosphorus-containing additives at a charged NMC surface through potentiostatic holds[J]. Journal of the Electrochemical Society, 2019, 166(4):A440-A447. [48] REN X, CHEN S, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem., 2018, 4(8):1877-1892. [49] JEONG S, KIM K C, LEE S R, et al. Cathode electrolyte interface of lithium difluorobis(oxalato) phosphate at 4.4 V operation of LiCoO2 for high-energy lithium-ion batteries[J]. Electrochimica Acta, 2019, 300:156-162. [50] PHAM H Q, HWANG E H, KWON Y G, et al. Approaching the maximum capacity of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathodes by charging to high-voltage in a non-flammable electrolyte of propylene carbonate and fluorinated linear carbonates[J]. Chemical Communications, 2019, 55(9):1256-1258. [51] LIN Y C, ZHANG H, YUE X P, et al. Triallyl phosphite as an electrolyte additive to improve performance at elevated temperature of LiNi0.6Co0.2Mn0.2O2/graphite cells[J]. Journal of Electroanalytical Chemistry, 2019, 832:408-416. [52] INAMOTO J, FUKUTSUKA T, MIYAZAKI K, et al. Characterization of the interface between LiMn2O4 thin-film electrode and LiBOBbased electrolyte solution by redox reaction of ferrocene[J]. Electrochemistry, 2018, 86(5):254-259. [53] SHARON D, SHARON P, HIRSHBERG D, et al. 2,4-dimethoxy-2,4-dimethylpentan-3-one:An aprotic solvent designed for stability in LiO-2 cells[J]. Journal of the American Chemical Society, 2017, 139(34):11690-11693. [54] WANG D, ZHANG F, HE P, et al. A versatile halide ester enabling Li-anode stability and a high rate capability in lithium-oxygen batteries[J]. Angewandte Chemie-International Edition, 2019, 58(8):2355-2359. [55] HAMIDAH N L, WANG F M, NUGROHO G. The understanding of solid electrolyte interface (SEI) formation and mechanism as the effect of flouro-o-phenylenedimaleimaide (F-MI) additive on lithium-ion battery[J]. Surface and Interface Analysis, 2019, 51(3):345-352. [56] ALVARADO J, SCHROEDER M A, POLLARD T P, et al. Bisalt ether electrolytes:A pathway towards lithium metal batteries with Ni-rich cathodes[J]. Energy & Environmental Science, 2019, 12(2):780-794. [57] DONG X, LIN Y, LI P, et al. High-energy rechargeable metallic lithium battery at -70℃ enabled by a cosolvent electrolyte[J]. Angewandte Chemie (International ed. in English), 2019:doi:https://doi.org/10.1002/anie.201900266. [58] ROSERO-NAVARRO N C, MIURA A, TADANAGA K. Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery[J]. Journal of Sol-Gel Science and Technology, 2019, 89(1):303-309. [59] WANG D W, SUN Q, LUO J, et al. Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(5):4954-4961. [60] LIU L, LI M, CHU L, et al. Facile fabrication of flexible Si-based nanocomposite films as high-rate anodes by layer-by-layer selfassembly[J]. Applied Surface Science, 2019, 476:501-512. [61] KAWAGUCHI T, NAKAMURA H, WATANO S. Dry coating of electrode particle with model particle of sulfide solid electrolytes for all-solid-state secondary battery[J]. Powder Technology, 2018, 323:581-587. [62] TSUKASAKI H, MORI Y, OTOYAMA M, et al. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer[J]. Scientific Reports, 2018, 8:doi:https://doi. org/10.1038/s41598-018-24524-7. [63] XIA Q Y, SUN S, XU J, et al. Self-standing 3D cathodes for all-solidstate thin film lithium batteries with improved interface kinetics[J]. Small, 2018, 14(52):doi:https://doi.org/10.1002/smll.201804149. [64] SALIAN G D, LEBOUIN C, GALEYEVA M, et al. Electrodeposition of polymer electrolyte into porous LiNi0.5Mn1.5O4 for high performance all-solid-state microbatteries[J]. Frontiers in Chemistry, 2019, 6:doi:10.3389/fchem.2018.00675. [65] SUZUKI K, KATO D, HARA K, et al. Composite sulfur electrode for all-solid-state lithium-sulfur battery with Li2S-GeS2-P2S5-based thiolisicon solid electrolyte[J]. Electrochemistry, 2018, 86(1):1-5. [66] NOH S, NICHOLS W T, CHO M, et al. Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte[J]. Journal of Electroceramics, 2018, 40(4):293-299. [67] CHEN K, SHINJO S, SAKUDA A, et al. Morphological effect on reaction distribution influenced by binder materials in composite electrodes for sheet-type all-solid-state lithium-ion batteries with the sulfide-based solid electrolyte[J]. Journal of Physical Chemistry C, 2019, 123(6):3292-3298. [68] KIZILASLAN A, AKBULUT H. Assembling all-solid-state lithiumsulfur batteries with Li3N-protected anodes[J]. ChemPlusChem, 2019, 84(2):183-189. [69] WESTOVER A S, DUDNEY N J, SACCI R L, et al. Deposition and confinement of Li metal along an artificial lipon-lipon interface[J]. ACS Energy Letters, 2019, 4(3):651-655. [70] RAGONES H, MENKIN S, KAMIR Y, et al. Towards smart free formfactor 3D printable batteries[J]. Sustainable Energy & Fuels, 2018. 2(7):1542-1549. [71] OTOYAMA M, SAKUDA A, HAYASHI A, et al. Optical microscopic observation of graphite composite negative electrodes in all-solid-state lithium batteries[J]. Solid State Ionics, 2018. 323:123-129. [72] SHU C Z, LONG J P, DOU S X, et al. Component-interaction reinforced quasi-solid electrolyte with multifunctionality for flexible Li-O-2 battery with superior safety under extreme conditions[J]. Small, 2019, 15(6):doi:https://doi.org/10.1002/smll.201804701. [73] CHANG Z, HE Y B, DENG H, et al. A multifunctional silly-putty nanocomposite spontaneously repairs cathode composite for advanced Li-S batteries[J]. Advanced Functional Materials, 2018, 28(50):doi:https://doi.org/10.1002/adfm.201804777. [74] YANG G, TAN J, JIN H, et al. Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-arealcapacity sulfur cathodes and lithium anodes[J]. Advanced Functional Materials, 2018, 28(32):doi:https://doi.org/10.1002/adfm.201800595. [75] GUPTA A, BHARGAV A, MANTHIRAM A. Highly solvating electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(6):doi:https://doi.org/10.1002/aenm.201803096. [76] LIM W G, JO C, CHO A, et al. Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation[J]. Advanced Materials, 2019, 31(3):doi:https://doi.org/10.1002/adma.201806547. [77] CHEN X, PENG L, WANG L, et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nature Communications, 2019, 10:doi:https://doi.org/10.1038/s41467-019-08818-6. [78] DAN THIEN N, HOEFLING A, YEE M, et al. Enabling high-rate and safe lithium ion-sulfur batteries by effective combination of sulfurcopolymer cathode and hard-carbon anode[J]. ChemSusChem, 2019, 12(2):480-486. [79] LI L S, ERB R M, WANG J J, et al. Fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries[J]. Advanced Energy Materials, 2019, 9(2):doi:https://doi.org/10.1002/aenm.201802472. [80] ZHENG J X, ZHAO Q, LIU X T, et al. Nonplanar electrode architectures for ultrahigh areal capacity batteries[J]. ACS Energy Letters, 2019, 4(1):271-275. [81] SUN F, GAO R, ZHOU D, et al. Revealing hidden facts of Li anode in cycled lithium oxygen batteries through X-ray and neutron tomography[J]. ACS Energy Letters, 2019, 4(1):306-316. [82] CHENG Q, WEI L, LIU Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nature Communications, 2018, 9:doi:https://doi.org/10.1038/s41467-018-05289-z. [83] PARK J, HYEON S, JEONG S, et al. Performance enhancement of Liion battery by laser structuring of thick electrode with low porosity[J]. Journal of Industrial and Engineering Chemistry, 2019, 70:178-185. [84] WEISS M, SEIDLHOFER B K, GEISS M, et al. Unraveling the formation mechanism of solid-liquid electrolyte interphases on LiPON thin films[J]. ACS Applied Materials & Interfaces, 2019, 11(9):9539-9547. [85] BUGRYNIEC P J, DAVIDSON J N, CUMMING D J, et al. Pursuing safer batteries:Thermal abuse of LiFePO4 cells[J]. Journal of Power Sources, 2019, 414:557-568. [86] LEE J Z, WYNN T A, SCHROEDER M A, et al. Cryogenic focused ion beam characterization of lithium metal anodes[J]. ACS Energy Letters, 2019, 4(2):489-493. [87] HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3):187-196. [88] LIANG J, HUO F, ZHANG Z, et al. Controlling the phenolic resinbased amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries[J]. Applied Surface Science, 2019, 476:1000-1007. [89] BUCHNER F, FINGERLE M, KIM J, et al. Interaction of ultrathin films of ethylene carbonate with oxidized and reduced lithium cobalt oxide-A model study of the cathode|electrolyte interface in Li-ion batteries[J]. Advanced Materials Interfaces, 2019, 6(3):doi:https://doi. org/10.1002/admi.201801650. [90] CAMPBELL I D, MARZOOK M, MARINESCU M, et al. How observable is lithium plating? Differential voltage analysis to identify and quantify lithium plating following fast charging of cold lithiumion batteries[J]. Journal of the Electrochemical Society, 2019, 166(4):A725-A739. [91] DING C C, WU S Y, XU Y Q, et al. Studies on the local structures for the trigonal Ni3+ centers in cathode materials LiAlyCo1-yO2(y=0, 0.1, 0.5, and 0.8)[J]. Magnetic Resonance in Chemistry, 2018, 56(9):803-809. [92] OKUNO Y, USHIROGATA K, SODEYAMA K, et al. Structures, electronic states, and reactions at interfaces between LiNi0.5Mn1.5O4 cathode and ethylene carbonate electrolyte:A first-principles study[J]. Journal of Physical Chemistry C, 2019, 123(4):2267-2277. [93] BETZ J, BIEKER G, MEISTER P, et al. Theoretical versus practical energy:A plea for more transparency in the energy calculation of different rechargeable battery systems[J]. Advanced Energy Materials, 2019, 9(6):doi:https://doi.org/10.1002/aenm.201803170. [94] BROGIOLI D, LANGER F, KUN R, et al. Space-charge effects at the Li7La3Zr2O12/poly(ethylene oxide) interface[J]. ACS Applied Materials & Interfaces, 2019, 11(12):11999-12007. [95] DEUTSCHEN T, GASSER S, SCHALLER M, et al. Modeling the self-discharge by voltage decay of a NMC/graphite lithium-ion cell[J]. Journal of Energy Storage, 2018, 19:113-119. [96] GALUSHKIN N E, YAZVINSKAYA N N, GALUSHKIN D N. Mechanism of gases generation during lithium-ion batteries cycling[J]. Journal of the Electrochemical Society, 2019, 166(6):A897-A908. [97] SHIN Y K, KIM M C, MOON S H, et al. Pore-controlled polymer membrane with Mn(Ⅱ) ion trapping effect for high-rate performance LiMn2O4 cathode[J]. Journal of Solid State Electrochemistry, 2019, 23(2):475-484. [98] BELANGER R L, COMMARIEU B, PAOLELLA A, et al. Diffusion control of organic cathode materials in lithium metal battery[J]. Scientific Reports, 2019, 9:doi:https://doi.org/10.1038/s41598-019-38728-y. [99] LI C, LIU S, SHI C, et al. Two-dimensional molecular brushfunctionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes[J]. Nature Communications, 2019, 10(1):1363-1363. [100] ATTIA P M, DAS S, HARRIS S J, et al. Electrochemical kinetics of SEI growth on carbon black:Part I. experiments[J]. Journal of the Electrochemical Society, 2019, 166(4):E97-E106. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||