储能科学与技术 ›› 2019, Vol. 8 ›› Issue (4): 784-795.doi: 10.12028/j.issn.2095-4239.2019.0138
起文斌, 田丰, 张华, 金周, 赵俊年, 武怿达, 詹元杰, 贲留斌, 俞海龙, 刘燕燕, 黄学杰
收稿日期:
2019-06-17
出版日期:
2019-07-01
发布日期:
2019-07-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池相关性能及材料,E-mail:xjhuang@jphy.ac.an。
作者简介:
起文斌(1992-),男,博士研究生,研究方向为固态锂离子电池正极材料,E-mail:qiwenbin16@mails.ucas.edu.cn
基金资助:
QI Wenbin, TIAN Feng, ZHANG Hua, JIN Zhou, ZHAO Juannian, WU Yida, ZHANG Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2019-06-17
Online:
2019-07-01
Published:
2019-07-01
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2019年4月1日至2019年5月31日上线的锂电池研究论文,共有2969篇,选择其中100篇加以评论。正极材料主要研究了层状三元材料、富锂相材料和尖晶石材料的结构和表面结构随电化学脱嵌锂变化以及掺杂和表面包覆及界面层改进对其循环寿命的影响。硅基复合负极材料研究侧重于复合材料、电极结构和电解液添加剂改进,金属锂负极的研究侧重于通过表面覆盖层的设计来提高其循环性能。固体电解质重点研究硫化物和含卤素的硫化物,固态电池的研究也多数选用硫化物固体电解质。电解液添加剂则重点在于提升高电压和高镍电解质循环稳定性和充放电库伦效率。锂硫电池的研究侧重于正极的改进。原位分析偏重于电极中的反应和固态电池的失效过程。理论模拟工作涵盖动力学、界面SEI形成机理分析和电池失效机制等。
中图分类号:
起文斌, 田丰, 张华, 金周, 赵俊年, 武怿达, 詹元杰, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2019.04.01—2019.05.31)[J]. 储能科学与技术, 2019, 8(4): 784-795.
QI Wenbin, TIAN Feng, ZHANG Hua, JIN Zhou, ZHAO Juannian, WU Yida, ZHANG Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr. 01, 2019 to May 31, 2019)[J]. Energy Storage Science and Technology, 2019, 8(4): 784-795.
[1] ZHU J, CHEN G. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1-x-y] O2 cathodes[J]. Journal of Materials Chemistry A, 2019, 7(10):5463-5474. [2] LI W, ASL H Y, XIE Q, et al. Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(13):5097-5101. [3] XU C, XIANG W, WU Z G, et al. A highly-stabilized Ni-rich cathode material with Mo induced epitaxially grown nanostructured hybrid surface for high performance lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11:16629-16638. [4] YANG H, WU H H, GE M, et al. Simultaneously dual modifcation of Nirich layered oxide cathode for high-energy lithium-ion batteries[J]. Advanced Functional Materials, 2019, 29(13):doi:10.1002/adfm.201808825. [5] YAN P, ZHENG J, TANG Z K, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nature Nanotechnology, 2019, 6:602-608. [6] CHEN Z, ZHANG Z, LI J. Polyhedral perspectives on the capacity limit of cathode compounds for lithium-ion batteries:A case study for Li6CoO4[J]. Physical Chemistry Chemical Physics, 2018, 20(31):20363-20370. [7] LEE S, JIN W, KIM S H, et al. Oxygen vacancy diffusion and condensation in li-ion battery cathode materials[J]. Angewandte Chemie, 2019, doi:10.1002/anie.201904469. [8] JEHNICHEN P, WEDLICH K, KORTE C. Degradation of high-voltage cathodes for advanced lithium-ion batteries differential capacity study on differently balanced cells[J]. Science and Technology of Advanced Materials, 2018, 20(1):1-9. [9] GONG Y, CHEN Y, ZHANG Q, et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-05833-x. [10] LI Y, SHI L, ZHOU Y, et al. Effect of carbonate precipitant on the microstructure and electrochemical properties of LiNi0.5Mn1.5O4 cathodes[J]. Journal of the Electrochemical Society, 2018, 165(9):A1671-A1678. [11] ZHAO H, LI F, SHU X, et al. Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties[J]. Ceramics International, 2018, 44(16):20575-20580. [12] CHIBA K, HAMADA Y, HAYAKAWA H, et al. A novel synthetic route of micrometer-sized LiCoMnO4 as 5 V cathode material for advanced lithium ion batteries[J]. Solid State Ionics, 2019, 333:9-15. [13] GALVEZ-ARANDA D E, VERMA A, HANKINS K, et al. Chemical and mechanical degradation and mitigation strategies for Si anodes[J]. Journal of Power Sources, 2019, 419:208-218. [14] ZHU Y, HU W, ZHOU J, et al. Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage[J]. ACS Applied Materials & Interfaces, 2019, 11(20):18305-18312. [15] LEE P K, TAHMASEBI M H, RAN S, et al. Leveraging titanium to enable silicon anodes in lithium-ion batteries[J]. Small, 2018, 14(41):doi:10.1002/smll.201802051. [16] HAO Q, HOU J, YE J, et al. Hierarchical macroporous Si/Sn composite:Easy preparation and optimized performances towards lithium storage[J]. Electrochimica Acta, 2019, 306:427-436. [17] MISHRA K, GEORGE K, ZHOU X D. Submicron silicon anode stabilized by single-step carbon and germanium coatings for high capacity lithium-ion batteries[J]. Carbon, 2018, 138:419-426. [18] OKASHY S, LUSKI S, ELIAS Y, et al. Practical anodes for Li-ion batteries comprising metallurgical silicon particles and multiwall carbon nanotubes[J]. Journal of Solid State Electrochemistry, 2018, 22(10):3289-3301. [19] PARIKH P, SINA M, BANERJEE A, et al. Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes[J]. Chemistry of Materials, 2019, 31(7):2535-2544. [20] MERY A, BERNARD P, VALERO A, et al. A polyisoindigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications[J]. Journal of Power Sources, 2019, 420:9-14. [21] LI Q, LIU X, HAN X, et al. Identification of the solid electrolyte interface on the Si/C composite anode with FEC as the additive[J]. ACS Applied Materials & Interfaces, 2019, 11(15):14066-14075. [22] ZHU G, ZHANG F, LI X, et al. Engineering the distribution of carbon in silicon oxide nanospheres at the atomic level for highly stable anodes[J]. Angewandte Chemie, 2019, 58:6669-6673. [23] CAO Y, HATCHARD T D, DUNLAP R A, et al. Mechanofusion-derived Si-alloy/graphite composite electrode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(14):8335-8343. [24] DOSE W M, MARONI V A, MUNOZ P M J, et al. Assessment of Li-inventory in cycled Si-graphite anodes using LiFePO4 as a diagnostic cathode[J]. Journal of the Electrochemical Society, 2018, 165(10):A2389-A2396. [25] ZHANG H, LIAO X, GUAN Y, et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-06126-z. [26] TAN S J, YUE J, HU X C, et al. Nitriding interface regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie, 2019, 23:7802-7807. [27] BAI M, XIE K, HONG B, et al. An artifcial Li3PO4 solid electrolyte interphase layer to achieve petal-shaped deposition of lithium[J]. Solid State Ionics, 2019, 333:101-104. [28] LEE J I, SHIN M, HONG D, et al. Effcient Li-ion-conductive layer for the realization of highly stable high-voltage and high-capacity lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(13):doi:10.1002/aenm.201803722. [29] LI C, LIU S, SHI C, et al. Two-dimensional molecular brushfunctionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes[J]. Nature Communications, 2019, 10:doi:10.1038/s41467-41019-09211-z. [30] PU J, LI J, ZHANG K, et al. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits[J]. Nature Communications, 2019, 10(1):1896-1896. [31] DENG W, LIANG S, ZHOU X, et al. Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode[J]. Journal of Materials Chemistry A, 2019, 7(11):6267-6274. [32] GRIFFITH K J, WIADEREK K M, CIBIN G, et al. Niobium tungsten oxides for high-rate lithium-ion energy storage[J]. Nature, 2018, 559(7715):556-579. [33] SONG S, WANG H, WU L, et al. A bipolar and self-polymerized phthalocyanine complex for fast and tunable energy storage[J]. Angewandte Chemie, 2019, doi:10.1002/anie.201904242. [34] HAN J, KONG D, LV W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41017-02808-41462. [35] BHATTACHARYA P, LEE J H, KAR K K, et al. Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery[J]. Chemical Engineering Journal, 2019, 369:422-431. [36] JIN J, WANG Z, WANG R, et al. Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping[J]. Advanced Functional Materials, 2019, 29(12):doi:10.1002/adfm.201807441. [37] MO R, LI F, TAN X, et al. High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batterie[J]. Nature Communications, 2019, 10:doi:10.1038/s41467-41019-09274-y. [38] MAO C, WOOD M, DAVID L, et al. Selecting the best graphite for long-life, high-energy Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9):A1837-A1845. [39] QI W, BEN L, YU H, et al. Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer[J]. Journal of Power Sources, 2019, 424:150-157. [40] RIPHAUS N, STIASZNY B, BEYER H, et al. Understanding chemical stability issues between different solid electrolytes in all-solid-state batteries[J]. Journal of the Electrochemical Society, 2019, 166(6):A975-A983. [41] LI M, BAI Z, LI Y, et al. Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte[J]. Nature Communications, 2019, 10(1):1890-1890. [42] CHEN B, JU J, MA J, et al. Strain tunable ionic transport properties and electrochemical window of Li10GeP2S12 superionic conductor[J]. Computational Materials Science, 2018, 153:170-175. [43] NOMURA Y, YAMAMOTO K, HIRAYAMA T, et al. Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface[J]. Angewandte Chemie, 2019, 58(16):5292-5296. [44] XU H, YU Y, WANG Z, et al. A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries:Tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl halichalcogenides[J]. Journal of Materials Chemistry A, 2019, 7(10):5239-5247. [45] HANGHOFER I, BRINEK M, EISBACHER S L, et al. Substitutional disorder:structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I[J]. Physical Chemistry Chemical Physics:PCCP, 2019, 21(16):8489-8507. [46] WU F, FITZHUGH W, YE L, et al. Advanced sulfde solid electrolyte by core-shell structural design[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-06123-41462. [47] ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie, 2019, doi:10.1002/anie.201814222. [48] PUT B, MEES M J, HORNSVELD N, et al. Plasma-assisted ALD of LiPO(N) for solid state batteries[J]. Journal of the Electrochemical Society, 2019, 166(6):A1239-A1242. [49] TANG W, TANG S, GUAN X, et al. High-performance solid polymer electrolytes filled with vertically aligned 2D materials[J]. Advanced Functional Materials, 2019, 29(16):doi:10.1002/adfm.201900648. [50] FAGLIONI F, MERINOV B V, GODDARD W A, Ⅲ, et al. Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance[J]. Physical Chemistry Chemical Physics, 2018, 20(41):26098-26104. [51] ALDALUR I, MARTINEZ I M, KRZTON M A, et al. Flowable polymer electrolytes for lithium metal batteries[J]. Journal of Power Sources, 2019, 423:218-226. [52] LEE T J, SOON J, CHAE S, et al. A bifunctional electrolyte additive for high-voltage LiNi0.5Mn1.5O4 positive electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(12):11306-11316. [53] SUN D, WANG Q, ZHOU J, et al. Forming a stable CEI layer on LiNi0.5Mn1.5O4 cathode by the synergy effect of FEC and HDI[J]. Journal of the Electrochemical Society, 2018, 165(10):A2032-A2036. [54] FAN X, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8):715-724. [55] WANG S, CHEN S, GAO W, et al. A new additive 3-isocyanatopropyltrie thoxysilane to improve electrochemical performance of Li/NCM622 halfcell at high voltage[J]. Journal of Power Sources, 2019, 423:90-97. [56] NGUYEN C C, LUCHT B L. Development of electrolytes for Sigraphite composite electrodes[J]. Journal of the Electrochemical Society, 2018, 165(10):A2154-A2161. [57] JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9):739-746. [58] ASPERN N V, DIDDENS D, KOBAYASHI T, et al. Fluorinated cyclic phosphorus (Ⅲ)-based electrolyte additives for high voltage application in lithium ion batteries:Impact of structure-reactivity relationships on CEI formation and cell performance[J]. ACS Applied Materials & Interfaces, 2019, 11:16605-16618. [59] TESEMMA M, WANG F-M, HAREGEWOIN A M, et al. Investigation of the dipole moment effects of fluorofunctionalized electrolyte additives in a lithium ion battery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7):6640-6653. [60] KRANZ S, KRANZ T, JAEGERMANN A G, et al. Is the solid electrolyte interphase in lithium-ion batteries really a solid electrolyte? Transport experiments on lithium bis(oxalato)borate-based model interphases[J]. Journal of Power Sources, 2019, 418:138-146. [61] MIYAZAKI K, TAKENAKA N, FUJIE T, et al. Impact of cis- versus trans-confguration of butylene carbonate electrolyte on microscopic solid electrolyte interphase formation processes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(17):15623-15629. [62] KIM D Y, PARK I, SHIN Y, et al. Ni-stabilizing additives for completion of Ni-rich layered cathode systems in lithium-ion batteries:An ab initio study[J]. Journal of Power Sources, 2019, 418:74-83. [63] ZHENG H, ZHOU X, CHENG S, et al. High-voltage LiNi0.5Mn1.5O4 cathode stability of fluorinated ether based on enhanced separator wettability[J]. Journal of the Electrochemical Society, 2019, 166(8):A1456-A1462. [64] JIANG L, WANG Q, LI K, et al. A self-cooling and flame-retardant electrolyte for safer lithium ion batteries[J]. Sustainable Energy & Fuels, 2018, 2(6):1323-1331. [65] GUO P, SU A, WEI Y, et al. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11:19413-19420. [66] ZENG Z, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8):674-681. [67] LIU B, LI Q, ENGELHARD M H, et al. Constructing robust electrode/electrolyte interphases to enable wide-temperature applications of lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b03821. [68] LIU K, CHENG C F, ZHOU L, et al. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries[J]. Journal of Power Sources, 2019, 423:297-304. [69] KATO A, SUYAMA M, HOTEHAMA C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films[J]. Journal of the Electrochemical Society, 2018, 165(9):A1950-A1954. [70] YAN H, WANG H, WANG D, et al. In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Letters, 2019, 19(5):3280-3287. [71] LI X, LIANG J, LUO J, et al. High-performance Li-SeSx all-solid-state lithium batteries[J]. Advanced Materials, 2019, 31(17):doi:10.1002/adma.201808100. [72] MATSUDA R, HIRABARA E, PHUC N H H, et al. Composite cathode of NCM particles and Li3PS4-LiI electrolytes prepared using the SEED method for all-solid-state lithium batteries[J]. Materials Science and Engineering, 2018, 429:doi:10.1088/1757-1899X/1429/1081/012033. [73] NAKAMURA T, AMEZAWA K, KULISCH J, et al. Guidelines for allsolid-state battery design and electrode buffer layers based on chemical potential profle calculation[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b03053. [74] ZHOU J, QIAN T, LIU J, et al. High-safety all-solid-state lithiummetal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte[J]. Nano Letters, 2019, 19:3066-3073. [75] CHEN Y, GAO X, JOHNSON L R, et al. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium-oxygen cell[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-03204-41460. [76] SU C C, HE M, AMINE R, et al. Establishment of selection rule for hydrofluoroether as electrolyte co-solvent through linear free-energy relationship in lithium-sulfur batteries[J]. Angewandte Chemie, 2019, doi:10.1002/anie.201904240. [77] BENITEZ A, CABALLERO A, MORALES J, et al. Physical activation of graphene:An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries[J]. Nano Research, 2019, 12(4):759-766. [78] CHU H, NOH H, KIM Y J, et al. Achieving three-dimensional lithium sulfde growth in lithium-sulfur batteries using high-donor-number anions[J]. Nature Communications, 2019, 10:doi:10.1038/s41467-41018-07975-41464. [79] LI X, LIANG J, LI W, et al. Stabilizing sulfur cathode in carbonate and ether electrolytes:Excluding long-chain lithium polysulfde formation and switching lithiation/delithiation route[J]. Chemistry of Materials, 2019, 31(6):2002-2009. [80] YANG X, GAO X, SUN Q, et al. Promoting the transformation of Li2S2 to Li2S:Signifcantly increasing utilization of active materials for high-sulfur-loading Li-S batteries[J]. Advanced Materials (Deerfield Beach, Fla.), 2019, doi:10.1002/adma.201901220. [81] ABRAHAM A, HUANG J, SMITH P F, et al. Communicationdemonstration and electrochemistry of a self-forming solid state rechargeable LiI(HPN) 2 based Li/I 2 battery[J]. Journal of the Electrochemical Society, 2018, 165(10):A2115-A2118. [82] GRISSA R, ABRAMOVA A, TAMBIO S J, et al. Thermomechanical polymer binder reactivity with positive active materials for Li metal polymer and Li-ion batteries:An XPS and XPS imaging study[J]. ACS Applied Materials & Interfaces, 2019, 11(20):18368-18376. [83] NIE Z, MCCORMACK P, BILHEUX H Z, et al. Probing lithiation and delithiation of thick sintered lithium-ion battery electrodes with neutron imaging[J]. Journal of Power Sources, 2019, 419:127-136. [84] DAEMI S R, LU X, SYKES D, et al. 4D visualisation of in situ nano-compression of Li-ion cathode materials to mimic early stage calendering[J]. Materials Horizons, 2019, 6(3):612-617. [85] SULAS D B, JOHNSTON S, SEITZMAN N, et al. Defect detection in solid-state battery electrolytes using lock-in thermal imaging[J]. Journal of the Electrochemical Society, 2018, 165(13):A3205-A3211. [86] YU S, HUANG X, BROCK J D, et al. Regulating key variables and visualizing lithium dendrite growth:An operando X-ray study[J]. Journal of the American Chemical Society, 2019, 141:8441-8449. [87] KOBAYASHI S, KUWABARA A, FISHER C A J, et al. Microscopic mechanism of biphasic interface relaxation in lithium iron phosphate after delithiation[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-05241-41461. [88] MULLALIU A, AQUILANTI G, STIEVANO L, et al. Beyond the oxygen redox strategy in designing cathode material for batteries:Dynamics of a prussian blue-like cathode revealed by operando X-ray diffraction and X-ray absorption fne structure and by a theoretical approach[J]. Journal of Physical Chemistry C, 2019, 123(14):8588-8598. [89] MATSUDA Y, KUWATA N, OKAWA T, et al. In situ raman spectroscopy of LixCoO2 cathode in Li/Li3PO4/LiCoO2 all-solid-state thin-flm lithium battery[J]. Solid State Ionics, 2019, 335:7-14. [90] BERCKMANS G, DE SUTTER L, MARINARO M, et al. Analysis of the effect of applying external mechanical pressure on next generation silicon alloy lithium-ion cells[J]. Electrochimica Acta, 2019, 306:387-395. [91] BHARATHRAJ S, ADIGA S P, PATIL R S, et al. An effcient and chemistry independent analysis to quantify resistive and capacitive loss contributions to battery degradation[J]. Scientifc Reports, 2019, 9(1):6576-6576. [92] KONDO H, SAWADA H, OKUDA C, et al. Influence of the active material on the electronic conductivity of the positive electrode in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(8):A1285-A1290. [93] LI Y, QI Y. Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface[J]. Energy & Environmental Science, 2019, 12(4):1286-1295. [94] YAN C, LI H R, CHEN X, et al. Regulating inner helmholtz plane for stable solid electrolyte inter-phase on lithium metal anodes[J]. Journal of the American Chemical Society, 2019, doi:10.1021/jacs.9b05029. [95] ARRIAZU G E M, PINTO O A, LOPEZ DE MISHIMA B A, et al. The kinetic origin of the daumas-herold model for the Li-ion/graphite intercalation system[J]. Electrochemistry Communications, 2018, 93:133-137. [96] INTAN N N, KLYUKIN K, ALEXANDROV V. Ab initio modeling of transition metal dissolution from the LiNi0.5Mn1.5O4 cathode[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b06010. [97] HAO F, WANG W, MUKHERJEE P P. Electrochemical-reaction-driven interfacial stress in a solid-solid layered architecture[J]. Physical Review Applied, 2019, 11(3):doi:10.1103/PhysRevApplied.1111.034038. [98] KAZEMI N, DANILOV D L, HAVERKATE L, et al. Modeling of allsolid-state thin-flm Li-ion batteries:Accuracy improvement[J]. Solid State Ionics, 2019, 334:111-116. [99] TRAN M K, RODRIGUES M T F, KATO K, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nature Energy, 2019, 4(4):339-345. [100] LEPAGE D, SAVIGNAC L, SAULNIER M, et al. Modification of aluminum current collectors with a conductive polymer for application in lithium batteries[J]. Electrochemistry Communications, 2019, 102:1-4. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||