储能科学与技术 ›› 2019, Vol. 8 ›› Issue (5): 941-953.doi: 10.12028/j.issn.2095-4239.2019.0180
田丰, 起文斌, 张华, 金周, 季洪祥, 田孟羽, 武怿达, 詹元杰, 贲留斌, 俞海龙, 刘燕燕, 黄学杰
收稿日期:
2019-08-04
出版日期:
2019-09-01
发布日期:
2019-09-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池相关性能及材料,E-mail:xjhuang@jphy.ac.an。
作者简介:
田丰(1995-),男,博士研究生,研究方向为固态锂离子电池正极材料,E-mail:fengtiannn@163.com
基金资助:
TIAN Feng, QI Wenbin, ZHANG Hua, JIN Zhou, JI Hongxiang, TIAN Mengyu, WU Yida, ZHAN Yuanjie, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie
Received:
2019-08-04
Online:
2019-09-01
Published:
2019-09-01
摘要: 该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2019年6月1日至2019年7月31日上线的锂电池研究论文,共有3486篇,选择其中100篇加以评论。正极材料主要研究了层状三元材料和钴酸锂材料的掺杂表面包覆对其性能的改善作用。硅基负极材料和金属锂负极侧重于设计三维结构、表面修饰和使用功能电解液添加剂来提高循环性能和库仑效率。固体电解质研究集中在硫化物、含卤素的硫化物和聚合物,电解液侧重于研究提高正极表面CEI稳定性的和抑制正极溶解的过渡金属离子对负极SEI稳定性影响的功能添加剂。固态电池的研究主要为固态锂电池和锂离子电池正负极的复合电极设计。锂硫电池的研究重点在于正极的催化活性研究和负极界面的稳定性研究。原位分析偏重于锂离子和固态锂二次电池的失效机制分析。还有少数几篇涉及理论计算和电池回收。
中图分类号:
田丰, 起文斌, 张华, 金周, 季洪祥, 田孟羽, 武怿达, 詹元杰, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2019.06.01-2019.07.31)[J]. 储能科学与技术, 2019, 8(5): 941-953.
TIAN Feng, QI Wenbin, ZHANG Hua, JIN Zhou, JI Hongxiang, TIAN Mengyu, WU Yida, ZHAN Yuanjie, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2019 to Jul. 31, 2019)[J]. Energy Storage Science and Technology, 2019, 8(5): 941-953.
[1] AHN Y K, JO Y N, CHO W, et al. Mechanism of capacity fading in the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Energies, 2019, 12(9):doi:10.1039/C2TA00678B. [2] BESLI M M, SHUKLA A K, WEI C, et al. Thermally-driven mesopore formation and oxygen release in delithiated NCA cathode particles[J]. Journal of Materials Chemistry A, 2019, 7(20):12593-12603. [3] DE BIASI L, SCHIELE A, ROCA-AYATS M, et al. Phase transformation behavior and stability of LiNiO2 cathode material for Li-ion batteries obtained from insitu gas analysis and operando X-ray diffraction[J]. ChemSusChem, 2019, 12(10):2240-2250. [4] CHENG X, ZHENG J, LU J, et al. Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating[J]. Nano Energy, 2019, 62:30-37. [5] PARK K J, HWANG J Y, RYU H H, et al. Degradation mechanism of Ni-enriched nca cathode for lithium batteries:Are microcracks really critical?[J]. ACS Energy Letters, 2019, 4(6):1394-1400. [6] BUCHNER F, FINGERLE M, KIM J, et al. Interaction of ultrathin films of ethylene carbonate with oxidized and reduced lithium cobalt oxide-A model study of the cathode|electrolyte interface in Li-ion batteries[J]. Advanced Materials Interfaces, 2019, 6(3):doi:10.1002/admi.201801650. [7] GAUTHIER M, KARAYAYLALI P, GIORDANO L, et al. Probing surface chemistry changes using LiCoO2-only electrodes in Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(7):A1377-A1387. [8] LIU Q, SU X, LEI D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3(11):936-943. [9] MAO Y, WANG X, XIA S, et al. High-voltage charging-induced strain, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode material[J]. Advanced Functional Materials, 2019, 29(18):doi:10.1002/adfm.201900247. [10] CAPRAZ O O, RAJPUT S, BASSETT K L, et al. Controlling expansion in lithium manganese oxide composite electrodes via surface modification[J]. Journal of the Electrochemical Society, 2019, 166(12):A2357-A2362. [11] SHEN B H, WANG S, TENHAEFF W E. Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability[J]. Science Advances, 2019, 5(7):doi:10.1126/sciadv.aaw4856. [12] CHO H, KIM K, PARK C M, et al. Partially carbonized poly (acrylic acid) grafted to carboxymethyl cellulose as an advanced binder for Si anode in Li-ion batteries[J]. Journal of Electrochemical Science and Technology, 2019, 10(2):131-138. [13] HAN B, PIERNAS-MUNOZ Z J, DOGAN F, et al. Probing the reaction between PVDF and LiPAA vs Li7Si3:Investigation of binder stability for Si anodes[J]. Journal of the Electrochemical Society, 2019, 166(12):A2396-A2402. [14] JUNG C H, KIM K H, HONG S H. Stable silicon anode for lithiumion batteries through covalent bond formation with a binder via esterification[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b03866. [15] WANG C, WEN J, LUO F, et al. Anisotropic expansion and sizedependent fracture of silicon nanotubes during lithiation[J]. Journal of Materials Chemistry A, 2019, 7(25):15113-15122. [16] WANG G, WEN Z, CUI L, et al. Sandwich-type Si@C/rGO composite stabilized by polyetherimide-derived interface with efficient lithium storage and high rate performance[J]. Journal of the Electrochemical Society, 2019, 166(10):A2096-A2104. [17] CAO Z, LI B, YANG S. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithiumcopper-lithium arrays[J]. Advanced Materials, 2019, doi:10.1002/adma.201901310:doi:10.1002/adma.201901310. [18] DENG K, HAN D, REN S, et al. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2019, 7(21):13113-13119. [19] NIU C, PAN H, XU W, et al. Self-smoothing anode for achieving highenergy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019,14(6):594-601. [20] ZHAI P, WANG T, YANG W, et al. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(18):doi:10.1002/aenm.201804019. [21] CHEN H, PEI A, LIN D, et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode[J]. Advanced Energy Materials, 2019, 9(22):doi:10.1002/aenm.201900858. [22] DI LECCE D, LEVCHENKO S, IACOVIELLO F, et al. X-ray nanocomputed tomography of electrochemical conversion in lithium-ion battery[J]. ChemSusChem, 2019, doi:10.1002/cssc.201901123. [23] LIANG J, LI X, ZHAO Y, et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithiummetal anodes[J]. Advanced Materials, 2018, 30(45):doi:10.1002/adma.201804684. [24] BETZ J, BRINKMANN J P, NOELLE R, et al. Cross talk between transition metal cathode and Li metal anode:Unraveling its influence on the deposition/dissolution behavior and morphology of lithium[J]. Advanced Energy Materials, 2019, 9(21):doi:10.1002/aenm.201900574. [25] SHI J, EHTESHAMI N, MA J, et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation:Fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429:67-74. [26] GU Y, WANG W W, HE J W, et al. Electrochemical polishing of lithium metal surface for highly demanding solid-electrolyte interphase[J]. ChemElectroChem, 2019, 6(1):181-188. [27] LIU S, XIA X, DENG S, et al. In situ solid electrolyte interphase from spray quenching on molten Li:A new way to construct highperformance lithium-metal anodes[J]. Advanced Materials, 2019, 31(3):doi:10.1002/adma.201806470. [28] NAN Y, LI S, ZHU M, et al. Endowing lithium metal surface with selfhealing property via in-situ gas-solid reaction for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b07942. [29] ARIYOSHI K, INO T, YAMADA Y. Rate capability of carbon-free lithium titanium oxide electrodes related to formation of electronic conduction paths observed by color change[J]. Journal of Power Sources, 2019, 430:150-156. [30] SHEN K, WANG Z, BI X, et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries[J]. Advanced Energy Materials, 2019, 9(20):doi:10.1002/aenm.201900260. [31] FANG S, SHEN L, LI S, et al. Alloying reaction confinement enables high-capacity and stable anodes for lithium-ion batteries[J]. ACS Nano, 2019, doi:10.1021/acsnano.9b04495. [32] KUWATA H, MATSUI M, SONOKI H, et al. Improved cycling performance of intermetallic anode by minimized SEI layer formation[J]. Journal of the Electrochemical Society, 2018, 165(7):A1486-A1491. [33] ALDALUR I, MARTINEZ-IBANEZ M, KRZTON-MAZIOPA A, et al. Flowable polymer electrolytes for lithium metal batteries[J]. Journal of Power Sources, 2019, 423:218-226. [34] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44):doi:10.1002/adma.201803075. [35] MARBELLA L E, ZEKOLL S, KASEMCHAINAN J, et al. Li-7NMR chemical shift imaging to detect microstructural growth of lithium in allsolid-state batteries[J]. Chemistry of Materials, 2019, 31(8):2762-2769. [36] BURCHARDT-TOFAUTE H, THELAKKAT M. The effect of fluorination on chain transfer reactions in the radical polymerization of oligo ethylene glycol ethenesulfonate monomers[J]. Polymer Chemistry, 2018, 9(30):4172-4186. [37] ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie-International Edition, 2019, 58(26):8681-8686. [38] FITZHUGH W, WU F, YE L, et al. Strain-stabilized ceramic-sulfide electrolytes[J]. Small, 2019, doi:10.1002/smll.201901470. [39] KIM D H, HWANG S, CHO J J, et al. Toward fast operation of lithium batteries:Ion activity as the factor to determine the concentration polarization[J]. ACS Energy Letters, 2019, 4(6):1265-1270. [40] TIEN MANH N, SUK J, KANG Y. Semi-interpenetrating solid polymer electrolyte for LiCoO2-based lithium polymer batteries operated at room temperature[J]. Journal of Electrochemical Science and Technology, 2019, 10(2):250-255. [41] DU Z J, WOOD D L, BELHAROUAK I. Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes[J]. Electrochemistry Communications, 2019, 103:109-113. [42] PARK S J, HWANG J Y, SUN Y K. Trimethylsilyl azide (C3H9N3Si):A highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(22):13441-13448. [43] WU S, LIN Y, XING L, et al. Stabilizing LiCoO2/graphite at high voltages with an electrolyte additive[J]. ACS Applied Materials & Interfaces, 2019, 11(19):17940-17951. [44] DENG X, ZUO X, LIANG H, et al. (Phenylsulfonyl)acetonitrile as a high-voltage electrolyte additive to form a sulfide solid electrolyte interface film to improve the performance of lithium-ion batteries[J]. Journal of Physical Chemistry C, 2019, 123(19):12161-12168. [45] JIA H, BILLMANN B, ONISHI H, et al. LiPF6 stabilizer and transition-metal cation scavenger:A bifunctional bipyridine-based ligand for lithium-ion battery application[J]. Chemistry of Materials, 2019, 31(11):4025-4033. [46] JANSSEN P, KASNATSCHEEW J, STREIPERT B, et al. Fluorinated electrolyte compound as a bi-functional interphase additive for both, anodes and cathodes in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(14):A3525-A3530. [47] HALL D S, ELDESOKY A, LOGAN E R, et al. Exploring classes of co-solvents for fast-charging lithium-ion cells[J]. Journal of the Electrochemical Society, 2018, 165(10):A2365-A2373. [48] CHEN F, LIAO Y, LI M, et al. Enhancement in cycling stability of LiNi0.5Mn1.5O4/Li cell under high temperature in gel polymer electrolyte system by tris(trimethylsilyl) borate additive[J]. Solid State Ionics, 2018, 327:1-10. [49] AGOSTINI M, SADD M, XIONG S, et al. Designing a safe electrolyte enabling long-life Li/S batteries[J]. ChemSusChem, 2019, doi:10.1002/cssc.201901770. [50] HAN S, ZHANG H, FAN C, et al. 1,4-Dicyanobutane as a filmforming additive for high-voltage in lithium-ion batteries[J]. Solid State Ionics, 2019, 337:63-69. [51] HUANG T, ZHENG X, PAN Y, et al. Effect of tributyl borate on electrochemical performance at an elevated temperature of highvoltage LiNi0.5Mn1.5O4 cathode[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b07126. [52] LIU B, LI Q, ENGELHARD M H, et al. Constructing robust electrode/electrolyte interphases to enable wide temperature applications of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(24):21496-21505. [53] CHOUDHURY S, TU Z, NIJAMUDHEEN A, et al. Stabilizing polymer electrolytes in high-voltage lithium batteries[J]. Nature Communications, 2019, 10:doi:10.1038/s41467-019-11015-0. [54] BYEON P, BAE H B, CHUNG H S, et al. Atomic-scale observation of LiFePO4 and LiCoO2 dissolution behavior in aqueous solutions[J]. Advanced Functional Materials, 2018, 28(45):doi:10.1002/adfm.201804564. [55] TORNHEIM A, SAHORE R, HE M, et al. Preformed anodes for highvoltage lithium-ion battery performance:Fluorinated electrolytes, crosstalk, and the origins of impedance rise[J]. Journal of the Electrochemical Society, 2018, 165(14):A3360-A3368.[56 ZHOU F, LI Z, LU Y Y, et al. Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries[J]. Nature Communications, 2019, 10:doi:10.1038/s41467-019-10473-w. [57] KWAK H W, PARK Y J. Cathode coating using LiInO2-LiI composite for stable sulfide-based all-solid-state batteries[J]. Scientific Reports, 2019, 9:doi:10.1038/s41598-019-44629-x. [58] KIM D H, LEE H A, SONG Y B, et al. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2019, 426:143-150. [59] LAPTEV A M, ZHENG H, BRAM M, et al. High-pressure field assisted sintering of half-cell for all-solid-state battery[J]. Materials Letters, 2019, 247:155-158. [60] NAGAO K, SUYAMA M, KATO A, et al. Highly stable Li/Li3BO3-Li2SO4 interface and application to bulk type all-solid-state lithium metal batteries[J]. ACS Applied Energy Materials, 2019, 2(5):3042-3048. [61] MIYAZAKI R, HIHARA T. Charge-discharge performances of Sn powder as a high capacity anode for all-solid-state lithium batteries[J]. Journal of Power Sources, 2019, 427:15-20. [62] CHANG J, SHANG J, SUN Y, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-06879-7. [63] CHENG Q, XU W, QIN S, et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2019, 58(17):5557-5561. [64] LUO D, LI G, DENG Y P, et al. Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(18):doi:10.1002/aenm.201900228. [65] YANG C, CHEN J, JI X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755):245-250. [66] BERGER A, FREIBERG A T S, SIEBEL A, et al. The importance of chemical reactions in the charging process of lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165(7):A1288-A1296. [67] DAN THIEN N, HOEFLING A, YEE M, et al. Enabling high-rate and safe lithium ion-sulfur batteries by effective combination of sulfurcopolymer cathode and hard-carbon anode[J]. ChemSusChem, 2019, 12(2):480-486. [68] FAN Q, LI B, SI Y, et al. Lowering the charge overpotential of Li2S via the inductive effect of phenyl diselenide in Li-S batteries[J]. Chemical Communications, 2019, 55(53):7655-7658. [69] REN Y X, ZENG L, JIANG H R, et al. Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries[J]. Nature Communications, 2019, 10(1):doi:10.1038/s41467-019-11168-y. [70] YANG X, GAO X, SUN Q, et al. Promoting the transformation of Li2S2 to Li2S:Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries[J]. Advanced Materials, 2019, 31(25):doi:10.1002/adma.201901220. [71] KWACK H, LEE J, JO W, et al. Rational design of highly packed, crack-free sulfur electrodes by scaffold-supported drying for ultrahighsulfur-loaded lithium sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b08006. [72] PEI F, FU A, YE W, et al. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries[J]. ACS Nano, 2019, 13(7):8337-8346. [73] CHEVRIER V L, KRAUSE L J, JENSEN L D, et al. Design of positive electrodes for Li-ion full cells with silicon[J]. Journal of the Electrochemical Society, 2018, 165(13):A2968-A2977. [74] PARK S H, KING P J, TIAN R, et al. High areal capacity battery electrodes enabled by segregated nanotube networks[J]. Nature Energy, 2019, 4(7):560-567. [75] GENOVESE M, LOULI A J, WEBER R, et al. Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries[J]. Journal of the Electrochemical Society, 2018, 165(14):A3321-A3325. [76] KIM S H, KIM K, CHOI H, et al. In situ observation of lithium metal plating in a sulfur-based solid electrolyte for all-solid-state batteries[J]. Journal of Materials Chemistry A, 2019, 7(22):13650-13657. [77] WALTHER F, KOERVER R, FUCHS T, et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry[J]. Chemistry of Materials, 2019, 31(10):3745-3755. [78] MARASCHKY A, AKOLKAR R. Mechanism explaining the onset time of dendritic lithium electrodeposition via considerations of the Li+ transport within the solid electrolyte interphase[J]. Journal of the Electrochemical Society, 2018, 165(14):D696-D703. [79] TANIM T R, DUFEK E J, EVANS M, et al. Extreme fast charge challenges for lithium-ion battery:Variability and positive electrode issues[J]. Journal of the Electrochemical Society, 2019, 166(10):A1926-A1938. [80] JAFTA C J, SUN X G, VEITH G M, et al. Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering[J]. Energy & Environmental Science, 2019, 12(6):1866-1877. [81] THOMPSON L M, STONE W, ELDESOKY A, et al. Quantifying changes to the electrolyte and negative electrode in aged NMC532/graphite lithium-ion cells[J]. Journal of the Electrochemical Society, 2018, 165(11):A2732-A2740. [82] LIU M, CHENG Z, QIAN K, et al. Efficient Li-metal plating/stripping in carbonate electrolytes using a LiNO3-gel polymer electrolyte, monitored by operando neutron depth profiling[J]. Chemistry of Materials, 2019, 31(12):4564-4574. [83] NIU C, LEE H, CHEN S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7):551-559. [84] ALMAR L, JOOS J, WEBER A, et al. Microstructural feature analysis of commercial Li-ion battery cathodes by focused ion beam tomography[J]. Journal of Power Sources, 2019, 427:1-14. [85] DONG K, OSENBERG M, SUN F, et al. Non-destructive characterization of lithium deposition at the Li/separator and Li/carbon matrix interregion by synchrotron X-ray tomography[J]. Nano Energy, 2019, 62:11-19. [86] TIPPENS J,MIERS J C,AFSHAR A,et al.Visualizing chemomechanical degradation of a solid-state battery electrolyte[J]. ACS Energy Letters, 2019, 4(6):1475-1483. [87] YU S H, HUANG X, BROCK J D, et al. Regulating key variables and visualizing lithium dendrite growth:An operando X-ray study[J]. Journal of the American Chemical Society, 2019, 141(21):8441-8449. [88] MAHANKALI K, THANGAVEL N K, ARAVA L M R. In situ electrochemical mapping of lithium-sulfur battery interfaces using AFM-SECM[J]. Nano Letters, 2019, doi:10.1021/acs. nanolett.9b01636. [89] NI K, WANG X, TAO Z, et al. In operando probing of lithium-ion storage on single-layer graphene[J]. Advanced Materials, 2019, 31(23):doi:10.1002/adma.201808091. [90] HUANG W, ATTIA P M, WANG H, et al. Evolution of the solidelectrolyte interphase on carbonaceous anodes visualized by atomicresolution cryogenic electron microscopy[J]. Nano Letters, 2019, doi:10.1021/acs.nanolett.9b01515. [91] PRON V G, VERSACI D, AMICI J, et al. Electrochemical characterization and solid electrolyte interface modeling of LiNi0.5Mn1.5O4-graphite cells[J]. Journal of the Electrochemical Society, 2019, 166(10):A2255-A2263. [92] GRISSA R, ABRAMOVA A, TAMBIO S J, et al. Thermomechanical polymer binder reactivity with positive active materials for Li metal polymer and Li-Ion batteries:An XPS and XPS imaging study[J]. ACS Applied Materials & Interfaces, 2019, 11(20):18368-18376. [93] DONG K, MARKOETTER H, SUN F, et al. In situ and operando tracking of microstructure and volume evolution of silicon electrodes by using synchrotron X-ray imaging[J]. ChemSusChem, 2019, 12(1):261-269. [94] VANPEENE V, VILLANOVA J, KING A, et al. Dynamics of the morphological degradation of Si-based anodes for Li-ion batteries characterized by in situ synchrotron X-ray tomography[J]. Advanced Energy Materials, 2019, 9(18):doi:10.1002/aenm.201803947. [95] OKAMOTO R, HAYASHI K, MATSUMOTO S, et al. Direct observation of Mn and Ni ordering in LiMn1.5Ni0.5O4 using atomic resolution scanning transmission electron microscopy[J]. Microscopy, 2018, 67(5):280-285. [96] TAN S J, YUE J, HU X C, et al. Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie-International Edition, 2019, 58(23):7802-7807. [97] FITZHUGH W, WU F, YE L, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Advanced Energy Materials, 2019, 9(21):doi:10.1002/aenm.201900807. [98] GALVEZ-ARANDA D E, SEMINARIO J M. Ab initio study of the interface of the solid-state electrolyte Li9N2Cl3 with a Li-metal electrode[J]. Journal of the Electrochemical Society, 2019, 166(10):A2048-A2057. [99] INTAN N N, KLYUKIN K, ALEXANDROV V. Ab initio modeling of transition metal dissolution from the LiNi0.5Mn1.5O4 cathode[J]. ACS Applied Materials & Interfaces, 2019, 11(22):20110-20116. [100] SHI Y, ZHANG M, MENG Y S, et al. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes[J]. Advanced Energy Materials, 2019, 9(20):10.1002/aenm.201900454. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||