[1] NA Jiao.Second-lifeelectricvehiclebatteries2019-2029[R/OL].[2018-08-01]. https://www.idtechex.com/research/reports/second-lifeelectric-vehicle-batteries-2019-2029-000626.asp#.
[2] 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6):957-966. REN Dongsheng, FENG Xuning, HAN Xuebing, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6):957-966.
[3] 吴小员, 王俊祥, 田维超, 等. 基于应用需求的退役电池梯次利用安全策略[J]. 储能科学与技术, 2018, 7(6):1094-1104. WU Xiaoyuan, WANG Junxiang, TIAN Weichao, at al. Applicationderived safety strategy for secondary utilization of retired power battery[J]. Energy Storage Science and Technology, 2018, 7(6):1094-1104.
[4] 苏伟, 钟国彬, 沈佳妮. 锂离子电池故障诊断技术进展[J]. 储能科学与技术, 2019, 8(2):225-236. SU Wei, ZHONG Guobin, SHEN Jiani, at al. The progress in fault diagnosis techniques for lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(2):225-236.
[5] 刘恩会. 基于内部健康特征的锂离子电池筛选分组[D]. 哈尔滨:哈尔滨工业大学, 2018. LIU Enhui. A Sorting Method Based on Internal Health Characteristics for Lithium-ion Batteries[D]. Harbin:Harbin Institute of Technology, 2018.
[6] 黄赛杰, 徐敏, 郑小鹿, 等. 动力电池充放电检测系统的设计与实现[J]. 储能科学与技术, 2019, 8(1):146-154. Huang Saijie, Xu Min, Zheng Xiaolu, et al. Design and implementation of power battery charging and discharging detection system[J]. Energy Storage Science and Technology, 2019, 8(1):146-154.
[7] 王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2):194-202. Wang Li, Xie Leqiong, Zhang Gan, at al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2):194-202.
[8] 周方方. 退役磷酸铁锂动力电池不一致性研究[D]. 大连:大连理工大学, 2015. ZHOU Fangfang. Research of Inconsistencies of Eliminated LiFePO4 Power Batteries[D]. Dalian:Dalian University of Technology, 2015.
[9] 王彩娟, 苏来锁, 宋杨, 等. 基于内阻-容量关系分析锂离子电池的老化[J]. 电池, 2016, 46(6):317-320. WANG Caijuan, SU Laisuo, SONG Yang, et al. Aging analysis of Liion battery based on relation of resistance-capacity[J]. Bimonthly Battery, 2016, 46(6):317-320.
[10] 邵亦博. 采用微分电压分析法的锂离子电池组健康状况检测系统[D]. 太原:太原理工大学, 2018. SHAO Yibo. State of health detection system of lithium-ion battery based on differential voltage analysis method[D]. Taiyuan:Taiyuan University of Technology, 2018.
[11] DUBARRY M, SVOBODA V, HWU R, et al. Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(10):454-457.
[12] 姚斌. 磷酸铁锂低温相变行为及改性研究[D]. 济南:山东大学, 2015. YAO Bin. Phase evolution of LiFePO4 working at low temperature and its modifications[D]. Ji'nan:Shandong University, 2015.
[13] 徐晶. 梯次利用锂离子电池容量和内阻变化特性研究[D]. 北京:北京交通大学, 2014. XU Jing. Research on the variation characteristics of capacity and internal resistance of Lithium-ion batteries echelon use[D]. Beijing:Beijing Jiaotong University, 2014.
[14] HAN X B, OUYANG M G, LU L G, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle:Aging mechanism identification[J]. Journal of Power Sources, 2014, 251:38-54.
[15] OUYANG M G, FENG X N, HAN X B, et al. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery[J]. Applied Energy, 2016, 165:48-59.
[16] BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017,341:373-386.
[17] 薛楠, 孙丙香, 白恺. 基于容量增量分析的符合材料锂电池分区间循环衰退机理[J]. 电工技术学报, 2017, 32(13):145-152. XUE Nan, SUN Binxiang, BAI Kai. Different state of charge range cycle degradation mechanism of composite material lithium-ion batteries based on incremental capacity analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(13):145-152.
[18] 徐成善, 卢兰光, 任东生, 等. 车用锂离子电池放电区间与容量衰减关系的研究[J]. 汽车工程, 2017, 39(10):1141-1210. XU Chengshan, LU Languang, REN Dongsheng, et al. A study on the relationship between capacity fade and discharge intervals of a vehicular lithium-ion battery[J]. Automotive Engineering, 2017, 39(10):1141-1210.
[19] WENG Caihao, CUI Yujia, SUN Jing, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235:36-44.
[20] HONG Jichao, WANG Zhenpo, LIU Peng. Big-data-based thermal runaway prognosis of battery systems for electric vehicles[J]. Energies, 2017, 10(7):919.
[21] 韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京:清华大学, 2014. HAN Xuebing. Study on Li-ion Battery Mechanism Model and State Estimation for Electric Vehicles[D]. Beijing:Tsinghua University, 2014.
[22] 侯朝勇, 数见昌弘, 许守平, 等. 基于微分曲线的LiFePO4电池SOC估计算法研究[J]. 储能科学与技术, 2017, 6(6):1321-1327. HONG Chaoyong, SHUJIAN Changhong, XU Shouping, et al. Research of SOC estimation algorithm for LiFePO4 battery based on differential curves[J]. Energy Storage Science and Technology, 2017, 6(6):1321-1327.
[23] 王芳, 孙智鹏, 林春景, 等. 能量型磷酸铁锂动力电池直流内阻测试及分析[J]. 重庆理工大学学报(自然科学), 2017, 31(8):44-50. WANG Fang, SUN Zhipeng, LIN Chunjing, et al. Experimental analysis of internal resistance of energy-type LiFePO4 power batteries and its influencing factors[J]. Journal of Chongqing University of Technology (Natural Science), 2017, 31(8):44-50.
[24] 林春景, 李斌, 常国峰, 等. 不同温度下磷酸铁锂电池内阻特性实验研究[J]. 电源技术, 2015, 39(1):22-25. LIN Chunjing, LI Bin, CHANG Guofeng, et al. Experimental study on internal resistance characteristics of LiFePO4 battery under different ambient temperatures[J]. Chinese Journal of Power Sources, 2015, 39(1):22-25. |