1 |
DUNN B , KAMATH H , TARASCON J M . Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
2 |
GOODENOUGH J B . Energy storage materials: A perspective[J]. Energy Storage Materials, 2015, 1: 158-161.
|
3 |
NAYAK P K , YANG L , BREHM W , et al . From lithium-ion to sodium‐ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120.
|
4 |
OLIVETTI E A , CEDER G , GAUSTAD G G , et al . Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals[J]. Joule, 2017, 1(2): 229-243.
|
5 |
PAN H , HU Y S , CHEN L . Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
|
6 |
BAUER A , SONG J , VAIL S , et al . The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702869.
|
7 |
VAALMA C , BUCHHOLZ D , WEIL M , et al . A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3: doi: 10.0038/natrevrmats.2018.13.
|
8 |
SLATER M D , KIM D , LEE E, et al . Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.
|
9 |
WANG P F , YOU Y , YIN Y X , et al . Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(26): 7445-7449.
|
10 |
DING J J , ZHOU Y N , SUN Q , et al . Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries[J]. Electrochimica Acta, 2013, 87: 388-393.
|
11 |
FU B , ZHOU X , WANG Y . High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries[J]. Journal of Power Sources, 2016, 310: 102-108.
|
12 |
穆林沁, 戚兴国, 胡勇胜, 等 . 新型O3-NaCu1/9Ni2/9Fe1/3Mn1/3O2钠离子电池正极材料研究[J]. 储能科学与技术, 2016, 5(3): 324-328.
|
|
MU Linqin , QI Xinguo , HU Yongsheng , et al . Electrochemical properties of novel O3-NaCu1/9Ni2/9Fe1/3Mn1/3O2 as cathode material for sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 324-328.
|
13 |
FANG Y , LIU Q , XIAO L , et al . High-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(32): 17977-17984.
|
14 |
倪乔, 吴川, 白莹, 等 . 具有(113)优势晶面的钠离子电池正极材料Na3V2(PO4)3/C[J]. 储能科学与技术, 2016, 5(3): 341-348.
|
|
NI Qiao , WU Chuan , BAI Ying , et al . Na3V2(PO4)3/C cathode materials with preferred (113) orientation for sodium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 341-348.
|
15 |
ZHANG Z , CHEN Z , MAI Z, et al . Toward high power-high energy sodium cathodes: A case study of bicontinuous ordered network of 3D porous Na3(VO)2(PO4)2F/rGO with pseudocapacitance effect[J]. Small, 2019: doi: 10.1002/smll.201900356.
|
16 |
WANG H , WANG L , CHEN S , et al . Crystallographic-plane tuned Prussian-blue wrapped with RGO: A high-capacity, long-life cathode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(7): 3569-3577.
|
17 |
陈新, 徐丽, 沈志龙, 等 . 纳米锰基普鲁士白的制备及电化学储钠性能[J]. 无机化学学报, 2018, 34(7): 1327-1332.
|
|
CHEN Xin , XU Li , SHEN Zhilong , et al . Preparation and electrochemical performance of nanostructure Mn-based Prussian white[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(7): 1327-1332.
|
18 |
LU Y , WANG L , CHENG J , et al . Prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52): 6544-6546.
|
19 |
FANG C , HUANG Y , ZHANG W , et al . Routes to high energy cathodes of sodium‐ion batteries[J]. Advanced Energy Materials, 2016, 6(5): 1501727.
|
20 |
QIAN J , WU C , CAO Y , et al . Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702619.
|
21 |
WU X , DENG W , QIAN J , et al . Single-crystal FeFe(CN)6 nanoparticles: A high capacity and high rate cathode for Na-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(35): 10130-10134.
|
22 |
YOU Y , WU X L , YIN Y X , et al . High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy& Environmental Science, 2014, 7(5): 1643-1647.
|
23 |
LIU Y , QIAO Y , ZHANG W , et al . Sodium storage in Na-rich Na x FeFe(CN)6 nanocubes[J]. Nano Energy, 2015, 12: 386-393.
|
24 |
YANG D , XU J , LIAO X Z , et al . Prussian blue without coordinated water as a superior cathode for sodium-ion batteries[J]. Chemical Communications, 2015, 51(38): 8181-8184.
|
25 |
YAN X , YANG Y , LIU E , et al . Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range[J]. Electrochimica Acta, 2017, 225: 235-242.
|
26 |
SONG J , WANG L , LU Y , et al . Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7): 2658-2664.
|
27 |
PENG J , WANG J , YI H , et al . A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs[J]. Advanced Energy Materials, 2018, 8(11): doi: 10.1002/aenm.201702856.
|
28 |
WU X Y , WU C H , WEI C X , et al . Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5393-5399.
|
29 |
WIDMANN A , KAHLERT H , PETROVIC-PRELEVIC I , et al . Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates[J]. Inorganic Chemistry, 2002, 41(22): 5706-5715.
|
30 |
YOU Y , YAO H R , XIN S , et al . Subzero-temperature cathode for a sodium-ion battery[J]. Advanced Materials, 2016, 28(33): 7243-7248.
|