1 |
WANG Y , LIU B , LI Q , et al . Lithium and lithium ion batteries for applications in microelectronic devices: A review[J]. Journal of Power Sources, 2015, 286: 330-345.
|
2 |
TARASCON J M , ARMAND M . Issues and challenges facing rechargeable lithium batteries, in: Materials for sustainable energy: A collection of peer-reviewed research and review articles from nature publishing group[J]. World Scientific, 2011: 171-179.
|
3 |
MARON R , AMALRAJ S F , LEIFER N , et al . A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21: 9938-9954.
|
4 |
ETACHERI V , MARON R , ELAZARI R , et al . Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4: 3243-3262.
|
5 |
LIU S , XIONG L , HE C . Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. Journal of Power Sources, 2014, 261: 285-291.
|
6 |
MA T , YU X , LI H , et al . High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries[J]. Nano Letters, 2017, 17:3959.
|
7 |
NITTA N , WU F , LEE J T, et al . Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18: 252-264.
|
8 |
BALOGUN M S , QIU W , LUO Y , et al . A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials[J]. Nano Research, 2016, 9: 2823-2851.
|
9 |
AHMED S , NELSON P A , GALLAGHER K G , et al . Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 733-740.
|
10 |
KWASIEFFAH C C , RABCZUK T . Dimensional analysis and modelling of energy density of lithium-ion battery[J]. Journal of Energy Storage, 2018, 18: 308-315.
|
11 |
WEN J , YU Y , CHEN C . A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2: 197-212.
|
12 |
TSUJIKAWA T , YABUTA K , ARAKAWA M , et al . Safety of large-capacity lithium-ion battery and evaluation of battery system for telecommunications[J]. Journal of Power Sources, 2013, 244: 11-16.
|
13 |
LASERNA E M , ZABALA E S , SARRIA I V , et al . Technical viability of battery second life: A study from the ageing perspective[J]. IEEE Transactions on Industry Applications, 2018, 54: 2073-2713.
|
14 |
HEYMANS C , WALKER S B , YOUNG S B , et al . Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling[J]. Energy Policy, 2014, 71: 22-30.
|
15 |
SCHMIDT A , SMITH A , EHRENBERG H . Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs[J]. Journal of Power Sources, 2019, 425: 27-38.
|
16 |
FENG X , OUYANG M , LIU X , et al . Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
17 |
WEI W W , DING L Y , CHENG L , et al . State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse[J]. Applied Energy, 2019, 251: 113365.
|
18 |
TAO W , WANG P , YOU Y , et al . Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Research, 2019, 12: 1739-1749.
|
19 |
ARORA S , SHEN W , KAPOOR A , et al . Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 1319-1331.
|
20 |
HU E , BAK S M, SENANAYAKE S D , et al . Thermal stability in the blended lithium manganese oxide-Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-ray diffraction and mass spectroscopy study[J]. Journal of Power Sources, 2015, 277: 193-197.
|
21 |
OUYANG D , CHEM M , LIU J , et al . Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions[J]. RSC Advances, 2018, 8: 33414-33424.
|
22 |
WANG Y , WU C , GU X . Research on fault diagnosis method for over-discharge of power lithium battery, in: Theory, methodology, tools and applications for modeling and simulation of complex systems[M]. Singapore: Springer, 2016,doi: https://doi.org/10.1007/978-981-10-2669-0_34308-314 .
doi: 10.1007/978-981-10-2669-0_34308-314
|
23 |
FUENTEVILLA D , HENDRICKS C , MANSOUR A . Quantifying the impact of overdischarge on large format lithium-ion cells[J]. ECS Transactions, 2015, 69: 1-4.
|
24 |
JEEVARAJAN J , STRANGWAYS B , NELSON T . Hazards due to overdischarge in lithium-ion cylindrical cells in multi-cell configurations[J]. NASA Technical Reports, 2010, 22(570): 1-12.
|
25 |
TAN Y , WANG K . Silicon-based anode materials applied in high specific energy lithium-ion batteries: A review[J]. Journal of Inorganic Materials, 2019, 34: 349-357.
|
26 |
DUBARRY M , TRUCHOT C , DEVIE A , et al . Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications IV. over-discharge phenomena[J]. Journal of The Electrochemical Society, 2015, 162: A1787-A1792.
|
27 |
CHEN J , BUHRMESTER C , DAHN J . Chemical overcharge and overdischarge protection for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8: A59-A62.
|
28 |
余仲宝, 胡俊伟, 初旭光, 等 . 过放电对MCMB-LiCoO2电池性能的影响[J]. 电池工业, 2006, 11(4): 223-226.
|
|
YU Z , HU J , CHU X , et al . Effects of over-discharge on performance of MCMB-LiCoO2 lithium-ion battery[J]. Chinese Battery Industry, 2006, 11(4): 223-226.
|
29 |
LAI X , ZHENG Y , ZHOU L , et al . Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells[J]. Electrochimica Acta, 2018, 278: 245-254.
|
30 |
GUO R , LU L , OUYANG M , et al . Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248.
|
31 |
HASHIMOTO M , YAMASHIRO M , ICHIHASHI T , et al . Mechanism of gas generation in lithium ion batteries by overdischarge[J]. ECS Transactions, 2015, 69: 17-22.
|
32 |
GAO T , WANG B , FANG H , et al . Li3V2(PO4)3 as a cathode additive for the over-discharge protection of lithium ion batteries[J]. RSC Advances, 2016, 6: 76933-76937.
|
33 |
SIEGEL J , LIN X , STEFANOPOULOU A , et al . Neutron imaging of lithium concentration in LFP pouch cell battery[J]. Journal of The Electrochemical Society, 2011, 158: A523-A529.
|
34 |
SIEGEL J , STEFANOPOULOU A , HANGANS P , et al . Expansion of lithium ion pouch cell batteries: Observations from neutron imaging[J]. Journal of The Electrochemical Society, 2013, 160: A1031-A1038.
|
35 |
SAME A , BATTAGLIA V , TANG H , et al . In situ neutron radiography analysis of graphite/NCA lithium-ion battery during overcharge[J]. Journal of Applied Electrochemistry, 2012, 42: 1-9.
|
36 |
BUTLER L , SCHILLINGER B , HAM K, et al . Neutron imaging of a commercial Li-ion battery during discharge: Application of monochromatic imaging and polychromatic dynamic tomography[J]. Nuclear Instruments and Methods in Physics Research A, 2011, 651: 320-328.
|
37 |
KAMATA M , ESAKA T , KODAMA N , et al . Application of neutron radiography to visualize the motion of lithium ions in lithium-ion conducting materials[J]. Journal of The Electrochemical Society, 1996, 143: 1866-1870.
|