1 |
WANG J R, FAN H B, SHEN Y M, et al. Large-scale template-free synthesis of nitrogen-doped 3D carbon frame-works as low-cost ultra-long-life anodes for lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 357: 376-383.
|
2 |
XIA Y, ZHEN X, DOU X, et al. Green and facile fabrication of hollow porous MnO/C microalgaes for lithium-ion batteries[J]. ACS Nano, 2013, 7(8): 7083-7092.
|
3 |
TIAN X M, ZHAO D L, MENG W J, et al. Highly porous MnO/C@rGO nanocomposite derived from Mn-BDC@rGO as high-performance anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 792: 487-495.
|
4 |
CHEN L F, MA S X, LU S, et al. Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries[J]. Nano Research, 2017, 10(1): 1-11.
|
5 |
GUO S M, LU G X, QIU S, et al. Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances[J]. Nano Energy, 2014, 9: 41-49.
|
6 |
ZHANG W M, WU X L, HU J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode marerial for lithium-ion batteries[J]. Advanced Functional Material, 2008, 18(24): 3941-3946.
|
7 |
HONG X, LIANG J F, FAN H, et al. Facile fabrication of 3D SnO2/nitrogen-doped graphene aerogels for superior lithium storage[J]. RSC Advances, 2015, 5(84): 68822-68828.
|
8 |
LI J, ZHANG X, GUO J Q, et al. Facile surfactant- and template-free synthesis and electrochemical properties of SnO2/graphene composites[J]. Journal of Alloys and Compounds, 2016, 674: 44-50.
|
9 |
PEI X Y, MO D C, LYU S S, et al. Facile preparation of N-doped MnO/rGO composites as an anode material for high-performance lithium-ion batteries[J]. Applied Surface Science, 2019, 465: 470-477.
|
10 |
WU L L, ZHAO D L, CHENG X W, et al. Nanorod Mn3O4 anchored on graphenen nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. Journal of Alloys and Compounds, 2017, 728: 383-390.
|
11 |
ZHONG K F, XIN X, BIN Z, et al. MnO powder as anode active materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(10): 3300-3308.
|
12 |
SUN Y M, HU X L, LUO W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries[J]. Advanced Functional Material, 2013, 23(19): 2436-2444.
|
13 |
LIU R, CHEN X H, ZHOU C L, et al. Controlled synthesis of porous 3D interconnected MnO/C composite aerogel and their excellent lithium-storage properties[J]. Electrochimica Acta, 2019, 306: 143-150.
|
14 |
ZHU C Y, SHENG N, AKIYAMA T. MnO nanoparticles embedded in a carbon matrix for a high performance Li ion battery anode[J]. RSC Advances, 2015, 5(27): 21066-21073.
|
15 |
CHEN S J, CAI D P, YANG X H, et al. Metal-organic frameworks derived nanocomposites of mixed-valent MnOx nanoparticles in-situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries[J]. Electrochimica Acta, 2017, 256: 63-72.
|
16 |
PANDEY J, HUA B, NG W, et al. Devolping hierarchically porous MnOx/NC hybrid nanorods for oxygen reduction and evolution catalysis[J]. Green Chemistry, 2017, 19(12): 2793-2797.
|
17 |
DEBNATH B, SALUNKE H G, SHIVAPRASAD S M, et al. Surfactant-mediated resistance to surface oxidation in MnO nanostructures[J]. ACS Omega, 2017, 2(6): 3028-3035.
|
18 |
WANG C C, FU J L, ZHANG Y, et al. High ratio of low valence MnOx microhydrangeas capable of extrmely fast catalytic degradation of organcics[J]. Chemical Communications, 2018, 54(53): 7330-7333.
|
19 |
JIANG H, HU Y J, GUO S J, et al. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries[J]. ACS Nano, 2014, 8(6): 6038-6046.
|
20 |
WANG Y Z, WANG L X, MA Z P, et al. 3D-structure carbon-coated MnO/graphene nanocomposites with exceptional electrochemical performance for Li-ion battery anodes[J]. Journal of Solid State Electrochemistry, 2018, 22(10): 2977-2987.
|
21 |
LIU Y Y, JIANG J C, SUN K, et al. MnO-carbon-reduced graphene oxide composite with superior anode Li-ion storage performance[J]. Journal of Nanoparticle Research, 2019, 21(6): 154-163.
|
22 |
LV R T, CUI T X, JUN M S, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support[J]. Advanced Functional Material, 2011, 21(5): 999-1006.
|
23 |
WANG X Y, ZHOU X F, YAO K, et al. A SnO2/graphene composite as a high stability electrode for lithium ion batteries[J]. Carbon, 2011, 49(1): 133-139.
|
24 |
ZAHNG C F, PENG X, GUO Z P, et al. Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries[J]. Carbon, 2012, 50(5): 1879-1903.
|
25 |
LIU X W, YANG Z Z, PAN F S, et al. Anchoring nitrogen-doped TiO2 nanocrystals on nitrogen-doped 3D graphene frameworks for enhanced lithium storage[J]. Chemistry-A European Journal, 2017, 23(8): 1757-1762.
|