储能科学与技术 ›› 2020, Vol. 9 ›› Issue (4): 1147-1152.doi: 10.19799/j.cnki.2095-4239.2020.0071

• 储能系统与工程 • 上一篇    下一篇

基于自适应扩展卡尔曼滤波的锂离子电池荷电状态估计

李嘉波1, 魏孟1, 李忠玉2, 焦生杰1, 叶敏1, 徐信芯1   

  1. 1.长安大学,公路养护装备国家工程实验室,陕西 西安 710064
    2.河南省高远公路养护技术 有限公司,河南 新乡 453000
  • 收稿日期:2020-02-16 修回日期:2020-02-18 出版日期:2020-07-05 发布日期:2020-06-30
  • 作者简介:李嘉波(1992—),男,博士,研究方向为新能源汽车,E-mail:43991454 @qq.com。
  • 基金资助:
    国家自然科学基金青年项目(51805041);河南省交通运输厅科技计划项目(2019J3)

State of charge estimation of Li-ion battery based on adaptive extended Kalman filter

LI"Jiabo1, WEI"Meng1, LI"Zhongyu2, JIAO"Shengjie1, YE"Min1, XU"Xinxin1   

  1. 1.Highway Maintenance Equipment National Engineering Laboratory, Chang’an University, Xi’an 710064, Shaanxi, China
    2.Henan Gaoyuan Highway Maintenance Technology Co. Ltd. , Xinxiang 453000, Henan, China
  • Received:2020-02-16 Revised:2020-02-18 Online:2020-07-05 Published:2020-06-30

摘要:

锂离子电池荷电状态(SOC)是电池管理系统(BMS)重要的参数之一,准确估计可以提高电池的使用寿命。然而在SOC估计过程中,会受到如测量设备的精度、噪声等外界因素的干扰,降低SOC的估计精度。为了提高 SOC的估计精度,针对扩展卡尔曼滤波(EKF)算法易受噪声干扰,提出了以新息自适应扩展卡尔曼滤波来提高SOC的估计精度和稳定性。通过实验工况采集的数据,并与传统的EKF进行对比,估计误差可以控制在3%以内,验证了该模型的有效性。

关键词: 锂离子电池, BMS, SOC, 扩展卡尔曼滤波

Abstract:

The state of charge (SOC) of the Li-ion battery is an important parameter associated with a battery management system. However, when estimating the SOC, external factors, such as the accuracy of the measuring equipment and noise, can interfere and reduce the SOC estimation accuracy. In this study, an adaptive extended Kalman filter (EKF) is proposed to improve the estimation accuracy and stability of SOC. Compared with traditional EKF, the estimation error of our method can be controlled within 3%, demonstrating the validity of the proposed model.

Key words: lithium-ion battery, BMS, SOC, extended Kalman filter

中图分类号: