1 |
LI Y M, LU Y X, ZHAO C L, et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials, 2017, 7: 130-151.
|
2 |
PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
|
3 |
Geological Survey U.S. Mineral commodity summaries[R]. 2019: 98-99.
|
4 |
LI Y Q, LU Y X, PHILIPP A, et al. Intercalation chemistry of graphite: Alkali metal ons and beyond[J]. Chem. Soc. Rev., 2019, 48: 4655-4687.
|
5 |
NAYAK P K, YANG L, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angew. Chem. Int. Edit., 2018, 57(1): 102-120.
|
6 |
YANG S, GUO S H, ZHOU H S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy & Environmental Science, 2019, 12(3): 825-840.
|
7 |
WANG Y S, YU X Q, XU S Y, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nat. Mater., 2013, 4: doi: 10.1038/ncomms3365.
|
8 |
WANG Y S, RONG X H, HU Y S, et al. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries[J]. Nat. Mater., 2015, 6: doi: 10.1038/ncomms6954.
|
9 |
LI Y Q, YANG Y, LU Y X, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5: 1156-1158.
|
10 |
ZHAO C L, LU Y X, CHEN L Q, et al. Flexible Na batteries[J]. InfoMat., 2019, 2(1): 126-138.
|
11 |
XU S Y, WU X Y, LI Y M, et al. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries[J]. Chinese Physics B, 2014, 23(11): doi: 10.1088/1674-1056/23/11/118202.
|
12 |
MU L Q, XU S Y, LI Y M, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933.
|
13 |
王红, 廖小珍, 颉莹莹, 等. 新型移动式钠离子电池储能系统设计与研究[J]. 储能科学与技术, 2016, 5(1): 65-68.
|
|
WANG H, LIAO X Z, XIE Y Y, et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 65-68.
|
14 |
QI Y R, ZHAO J M, YANG C, et al. Comprehensive studies on the hydrothermal strategy for the synthesis of Na3(VO1-xPO4)2F1+2x(0≤x≤1) and their Na-storage performance[J]. Small Methods, 2018, doi: 10.1002/smtd.201800111.
doi: 10.1002/smtd.201800111
|
15 |
LU Y H, WANG L, CHENG J G, et al. Prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52): 6544-6546.
|
16 |
FU L J, TANG K, SONG K P, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014, 6(3): 1384-1389.
|
17 |
LI Y M, HU Y S, LI H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(1): 96-104.
|
18 |
MENG Q S, LU Y Q, DING F X, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612.
|
19 |
LI Y M, HU Y S, QI X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197.
|
20 |
LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153.
|
21 |
HU Y S, LU Y X. 2019 Nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries[J]. ACS Energy Letters, 2019, 4: 2689-2690.
|
22 |
方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158.
|
|
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158.
|