储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1383-1395.doi: 10.19799/j.cnki.2095-4239.2020.0220
周思宇(), 唐正, 范景瑞, 唐有根, 孙旦, 王海燕()
收稿日期:
2020-06-19
修回日期:
2020-07-03
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
王海燕
E-mail:1282068071@qq.com;wanghy419@csu.edu.cn
作者简介:
周思宇(1997—),男,研究生,研究方向为钠离子电池负极材料,E-mail:基金资助:
Siyu ZHOU(), Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG()
Received:
2020-06-19
Revised:
2020-07-03
Online:
2020-09-05
Published:
2020-09-08
Contact:
Haiyan WANG
E-mail:1282068071@qq.com;wanghy419@csu.edu.cn
摘要:
钠离子电池因钠资源丰富、成本相对低廉等特点有望在规模储能领域应用。在钠离子电池电极材料中,过渡金属氧化物主要基于转化反应储钠,理论容量高,应用前景好。但传统过渡金属氧化物电极存在体积膨胀大、循环寿命短、电压滞后、倍率性能差、首次库仑效率低等缺点。为了克服上述问题,通常将活性物质设计成具有三维结构的自支撑阵列电极。三维阵列电极具有开放空间大、比表面积合适、导电性良好、活性物质与集流体接触紧密等优势,可以显著改善过渡金属氧化物的储钠性能。本文系统综述了近年来过渡金属氧化物微纳阵列在钠离子电池材料领域的研究进展,并对其进行了展望。
中图分类号:
周思宇, 唐正, 范景瑞, 唐有根, 孙旦, 王海燕. 过渡金属氧化物微纳阵列在钠离子电池中的研究进展[J]. 储能科学与技术, 2020, 9(5): 1383-1395.
Siyu ZHOU, Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395.
1 | CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
2 | PAN H, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360. |
3 | XIANG X, ZHANG K, CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364. |
4 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chem. Soc. Rev., 2017, 46(12): 3529-3614. |
5 |
LOAIZA L C, MONCONDUIT L, SEZNEC V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: A perspective from structure to electrochemical mechanism[J]. Small, 2020, doi: 10.1002/smll.201905260.
doi: 10.1002/smll.201905260 |
6 | KLEIN F, JACHE B, BHIDE A, et al. Conversion reactions for sodium-ion batteries[J]. Phys. Chem. Chem. Phys., 2013, 15(38): 15876-15887. |
7 | MEI J, LIAO T, SPRATT H, et al. Honeycomb-inspired heterogeneous bimetallic Co-Mo oxide nanoarchitectures for high-rate electrochemical lithium storage[J]. Small Methods, 2019, 3(5): doi: 10.1002/smtd.201900055. |
8 | CHEN Z, GAO Y, ZHANG Q, et al. TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 774: 873-878. |
9 | KOLMAKOV A, KLENOV D O, LILACH Y, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles[J]. Nano Letters, 2005, 5(4): 667-673. |
10 | CHOI J S, KIM J H, KIM S H, et al. Nonvolatile memory device based on the switching by the all-organic charge transfer complex[J]. Applied Physics Letters, 2006, 89(15): doi: 10.1063/1.2360220. |
11 | LI Y B, BANDO Y, GOLBERG D, et al. Field emission from MoO3 nanobelts[J]. Applied Physics Letters, 2002, 81(26): 5048-5050. |
12 | POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 6803(407): 496-499. |
13 | ZHANG P, GUO S, LIU J, et al. Highly uniform nitrogen-doped carbon decorated MoO2 nanopopcorns as anode for high-performance lithium/sodium-ion storage[J]. Journal of Colloid and Interface Science, 2020, 563: 318-327. |
14 | WANG M, WANG X, YAO Z, et al. SnO2 nanoflake arrays coated with polypyrrole on a carbon cloth as flexible anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24198-24204. |
15 | MELIGRANA G, LUEANGCHAICHAWENG W, COLÒ F, et al. Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries[J]. Electrochimica Acta, 2017, 235: 143-149. |
16 | LIANG S, CHENG Y J, ZHU J, et al. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes[J]. Small Methods, 2020: doi: 10.1002/smtd.202000218. |
17 |
WEI S, WANG C, CHEN S, et al. Dial the mechanism switch of VN from conversion to intercalation toward long cycling sodium-ion battery[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.201903712.
doi: 10.1002/aenm.201903712 |
18 | YU Z, WANG J, WANG L, et al. Unraveling the origins of the “Unreactive Core” in conversion electrodes to trigger high sodium-ion electrochemistry[J]. ACS Energy Letters, 2019, 4(8): 2007-2012. |
19 | ALCÁNTARA R, JARABA M, LAVELA P, et al. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries[J]. Chemistry of Materials, 2002, 14(7): 2847-2848. |
20 | MINAKSHI M, BARMI M, MITCHELL D R G, et al. Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium-ion battery[J]. Materials Today Energy, 2018, 10: 1-14. |
21 | LI Y, ZHANG M, QIAN J, et al. Freestanding N-doped carbon coated CuO array anode for lithium-ion and sodium-ion batteries[J]. Energy Technology, 2019, 7(7): doi: 10.1002/ente.201900252. |
22 | ZHAN J, WU K, YU X, et al. α-Fe2O3 nanoparticles decorated C@MoS2 nanosheet arrays with expanded spacing of (002) plane for ultrafast and high Li/Na-ion storage[J]. Small, 2019, 15(21): doi: 10.1002/smll201901083. |
23 | ZHAO Y J, WANG F X, WANG C, et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries[J]. Nano Energy, 2019, 56: 426-433. |
24 | WU K, GENG B, ZHANG C, et al. Hierarchical porous arrays of mesoporous Co3O4 nanosheets grown on graphene skin for high-rate and high-capacity energy storage[J]. Journal of Alloys and Compounds, 2020, 820: doi: 10.1016/j.jallcom.2019.153296. |
25 | ZHANG P, GUO S, LIU J, et al. Highly uniform nitrogen-doped carbon decorated MoO2 nanopopcorns as anode for high-performance lithium/sodium-ion storage[J]. Journal of Colloid and Interface Science, 2020, 563: 318-327. |
26 | MIERNICKI M, HOFMANN T, EISENBERGER I, et al. Legal and practical challenges in classifying nanomaterials according to regulatory definitions[J]. Nature Nanotechnology, 2019, 14(3): 208-216. |
27 | LIU K, DING F, LU Q W, et al. A novel plastic crystal composite polymer electrolyte with excellent mechanical bendability and electrochemical performance for flexible lithium-ion batteries[J]. Solid State Ionics, 2016, 289: 1-8. |
28 | LI Y Q, LI J C, LANG X Y, et al. Lithium ion breathable electrodes with 3D hierarchical architecture for ultrastable and high-capacity lithium storage[J]. Advanced Functional Materials, 2017, 27(29): doi: 10.1002adfm.201700447. |
29 | TONG X, XIA X, GUO C, et al. Efficient oxygen reduction reaction using mesoporous Ni-doped Co3O4 nanowire array electrocatalysts[J]. Journal of Materials Chemistry A, 2015, 3(36): 18372-18379. |
30 | SUN Y, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1): doi: 10.1038/nenergy.2015.8. |
31 | GU M, KUSHIMA A, SHAO Y, et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries[J]. Nano Lett., 2013, 13(11): doi: 10.1021/nl402633n. |
32 | KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 0052(334): 75-79. |
33 | HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251. |
34 | WU C, DOU S X, YU Y. The state and challenges of anode materials based on conversion reactions for sodium storage[J]. Small, 2018, 14(22): doi: 10.1002/smll.201703671. |
35 | HU R, CHEN D, WALLER G, et al. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity[J]. Energy & Environmental Science, 2016, 9(2): 595-603. |
36 | TIAN R, BRESHEARS M, HORVATH D V, et al. The rate performance of two-dimensional material-based battery electrodes may not be as good as commonly believed[J]. ACS Nano, 2020, 14(3): 3129-3140. |
37 | HE K, LIN F, ZHU Y, et al. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation[J]. Nano Letters, 2015, 15(9): 5755-5763. |
38 | KIM H, KIM H, KIM H, et al. Understanding origin of voltage hysteresis in conversion reaction for na rechargeable batteries: The case of cobalt oxides[J]. Advanced Functional Materials, 2016, 26(28): 5042-5050. |
39 | WANG J, WANG L, ENG C, et al. Elucidating the irreversible mechanism and voltage hysteresis in conversion reaction for high-energy sodium-metal sulfide batteries[J]. Advanced Energy Materials, 2017, 7(14): doi: 10.1002/aenm.201602706. |
40 | NI J F, LI L. Self-supported 3D array electrodes for sodium microbatteries[J]. Advanced Functional Materials, 2018, 28(3): doi: 10.1002/adfm.201704880. |
41 | LEI D, ZHANG M, QU B, et al. α-Fe2O3 nanowall arrays: Hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries[J]. Nanoscale, 2012, 4(11): 3422-3426. |
42 | WU D, WANG C, WU M, et al. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage[J]. Journal of Energy Chemistry, 2020, 43: 24-32. |
43 | HAO J, LIU X, LIU X, et al. Ionic liquid electrodeposition of Ge nanostructures on freestanding Ni-nanocone arrays for Li-ion battery[J]. RSC Advances, 2015, 5(25): 19596-19600. |
44 | REN W, WANG C, LU L, et al. SnO2@Si core-shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(43): 13433-13438. |
45 | WANG K X, LI Y, WU X Y, et al. Carbon nanocolumn arrays prepared by pulsed laser deposition for lithium ion batteries[J]. Journal of Power Sources, 2012, 203: 140-144. |
46 | LYTLE J C, YAN H, ERGANG N S, et al. Structural and electrochemical properties of three-dimensionally ordered macroporous tin(iv) oxide films[J]. Journal of Materials Chemistry, 2004, 14(10): 1616-1622. |
47 | SAKAMOTO J S, DUNN B. Hierarchical battery electrodes based on inverted opal structures[J]. Journal of Materials Chemistry, 2002, 12(10): 2859-2861. |
48 | ZHANG H, YU X, BRAUN P V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes[J]. Nat. Nanotechnol, 2011, 6(5): 277-81. |
49 | LEE Y H, LEU I C, LIAO C L, et al. Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(4): A207-A210. |
50 | ZHANG Y, LIM Y V, HUANG S, et al. Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries[J]. Small, 2018, 14(28): doi: 10.1002/smll.201800898. |
51 | YUAN S, HUANG X L, MA D L, et al. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode[J]. Adv. Mater., 2014, 26(14): 2273-2279. |
52 | ELLIS B L, KNAUTH P, DJENIZIAN T. Three-dimensional self-supported metal oxides for advanced energy storage[J]. Adv. Mater., 2014, 26(21): 3368-3397. |
53 | NI J, JIANG Y, WU F, et al. Regulation of breathing CuO nanoarray electrodes for enhanced electrochemical sodium storage[J]. Advanced Functional Materials, 2018, 28(15): doi: 10.1002/adfm.201707179. |
54 | XIA X, CHAO D, ZHANG Y, et al. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage[J]. Small, 2016, 12(22): 3048-3058. |
55 | CHEN M, CHAO D, LIU J, et al. Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin Tin monoxide nanoarrays[J]. Advanced Functional Materials, 2017, 27(12): doi: 10.1002/adfm.201606232. |
56 | LI Y, TAN B, WU Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1): 265-270. |
57 | XIA X, DENG S, XIE D, et al. Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays[J]. Journal of Materials Chemistry A, 2018, 6(32): 15546-15552. |
58 | ZHU J, DENG D. Uniform distribution of 1-D SnO2 nanorod arrays anchored on 2-D graphene sheets for reversible sodium storage[J]. Chemical Engineering Science, 2016, 154: 54-60. |
59 | NI J, FU S, YUAN Y, et al. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation[J]. Adv. Mater., 2018, 30(6): doi: 10.1002/adma.201704337. |
60 | XU Y, ZHOU M, WEN L, et al. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes[J]. Chemistry of Materials, 2015, 27(12): 4274-4280. |
61 | BIAN H, XIAO X, ZENG S, et al. Mesoporous C-coated SnOx nanosheets on copper foil as flexible and binder-free anodes for superior sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(5): 2243-2250. |
62 | WU K, ZHAN J, XU G, et al. MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries[J]. Nanoscale, 2018, 10(34): 16040-16049. |
63 | ZHAO Y, ZHANG W B, ZHAO Z Y, et al. Synthesis and evaluation of three-dimensional nickel molybdate nano-sheets on nickel foam as self-supported electrodes for sodium-ion hybrid capacitors[J]. Materials Research Express, 2018, 5(6): doi: 10.1088/2053-1591/aac466. |
64 | OU X, LI J, ZHENG F, et al. In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries[J]. Journal of Power Sources, 2017, 343: 483-491. |
65 | XIE X, KRETSCHMER K, ZHANG J, et al. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries[J]. Nano Energy, 2015, 13: 208-217. |
66 | NI J, WANG G, YANG J, et al. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability[J]. Journal of Power Sources, 2014, 247: 90-94. |
67 | LI X, HUANG Y, WANG J, et al. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery[J]. Journal of Materials Chemistry A, 2018, 6(4): 1390-1396. |
68 | WANG H, LI W, FEI H, et al. Facile hydrothermal growth of VO2 nanowire, nanorod and nanosheet arrays as binder free cathode materials for sodium batteries[J]. RSC Advances, 2016, 6(17): 14314-14320. |
69 | WANG H, GAO X, FENG J, et al. Nanostructured V2O5 arrays on metal substrate as binder free cathode materials for sodium-ion batteries[J]. Electrochimica Acta, 2015, 182: 769-774. |
70 | LIU F, CHEN Z, FANG G, et al. V2O5 Nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode[J]. Nano-Micro Letters, 2019, 11(1): doi: 10.1007/s40820-019-0256-2. |
71 | ZHANG Y, LIU C, GAO X, et al. Revealing the activation effects of high valence cobalt in CoMoO4 towards highly reversible conversion[J]. Nano Energy, 2020, 68: doi: 10.1016/j.nanoen.2019.104333. |
72 | JIN Q, WANG K, FENG P, et al. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries[J]. Energy Storage Materials, 2020, 27: 43-50. |
73 | GAO Y, ZHANG J, LI N, et al. Design principles of pseudocapacitive carbon anode materials for ultrafast sodium and potassium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(16): 7756-7764. |
74 | SUN Q, CAO Z, WANG S, et al. Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228128. |
75 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
76 | XU J, WANG M, WICKRAMARATNE N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Adv. Mater., 2015, 27(12): 2042-2048. |
77 | NI J, FU S, WU C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage[J]. Adv. Mater., 2016, 28(11): 2259-2265. |
78 | HAWKINS C G, WHITTAKER-BROOKS L. Vertically oriented TiS2-x nanobelt arrays as binder- and carbon-free intercalation electrodes for Li- and Na-based energy storage devices[J]. Journal of Materials Chemistry A, 2018, 6(44): 21949-21960. |
79 | UMEBAYASHI T, YAMAKI T, ITOH H, et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Applied Physics Letters, 2002, 81(3): 454-456. |
80 | FU S, NI J, XU Y, et al. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries[J]. Nano Lett., 2016, 16(7): 4544-4551. |
81 | WANG W, WU M, HAN P, et al. Understanding the behavior and mechanism of oxygen-deficient anatase TiO2 toward sodium storage[J]. ACS Appl. Mater. Interfaces, 2019, 11(3): 3061-3069. |
82 | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat. Mater., 2013, 12(6): 518-22. |
83 | LIM E, JO C, KIM M S, et al. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites[J]. Advanced Functional Materials, 2016, 26(21): 3711-3719. |
84 | NI J, WANG W, WU C, et al. Highly reversible and durable na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture[J]. Adv. Mater., 2017, 29(9): doi: 10.1002/adma.201605607. |
85 | DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J]. Angewandte Chemie-International Edition, 2018, 57(5): 1351-1355. |
86 | LIAO J Y, LUNA B D, MANTHIRAM A. TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage[J]. Journal of Materials Chemistry A, 2016, 4(3): 801-806. |
87 | KONG D, CHENG C, WANG Y, et al. Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes[J]. Journal of Materials Chemistry A, 2017, 5(19): 9122-9131. |
88 | ZHOU M, XU Y, LEI Y. Heterogeneous nanostructure array for electrochemical energy conversion and storage[J]. Nano Today, 2018, 20: 33-57. |
89 | WU J B, LI Z G, HUANG X H, et al. Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation[J]. Journal of Power Sources, 2013, 224: 1-5. |
90 | TANG J, NI S, CHEN Q, et al. The electrochemical performance of NiO nanowalls/Ni anode in half-cell and full-cell sodium ion batteries[J]. Materials Letters, 2017, 195: 127-130. |
91 | ZHANG W, CAO P, LI L, et al. Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 348: 599-607. |
92 | CHANG L, WANG K, HUANG L, et al. Hierarchically porous CoNiO2 nanosheet array films with superior sodium storage performance[J]. New Journal of Chemistry, 2017, 41(23): 14072-14075. |
93 | ZHAO D, XIE D, LIU H, et al. Flexible α-Fe2O3 nanorod electrode materials for sodium-ion batteries with excellent cycle performance[J]. Functional Materials Letters, 2018, 11(6): doi: 10.1142/S1793604718400027. |
94 | CHEN Y, YUAN X, YANG C, et al. γ-Fe2O3 nanoparticles embedded in porous carbon fibers as binder-free anodes for high-performance lithium and sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 777: 127-134. |
95 | LIU S, WANG Y, DONG Y, et al. Ultrafine Fe3O4 quantum dots on hybrid carbon nanosheets for long-life, high-rate alkali-metal storage[J]. ChemElectroChem, 2016, 3(1): 38-44. |
96 | JIANG J, MA C, MA T, et al. A novel CoO hierarchical morphologies on carbon nanofiber for improved reversibility as binder-free anodes in lithium/sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 794: 385-395. |
97 | WANG Z, ZHANG S, YUE L, et al. Synthesis of Co3O4 nanocubes/CNTs composite with enhanced sodium storage performance[J]. Solid State Ionics, 2017, 312: 32-37. |
98 | LIU J, DAI J, HUANG L, et al. Flexible and binder-free electrospun Co3O4 nanoparticles/carbon composite nanofiber mats as negative electrodes for sodium-ion batteries[J]. Functional Materials Letters, 2018, 11(4): doi: 10.1142/S1793604718500728. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[3] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[4] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[5] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[6] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[7] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
[8] | 赵志强, 刘恒均, 徐熙祥, 潘圆圆, 李庆浩, 李洪森, 胡涵, 李强. 储能科学中的磁性表征技术[J]. 储能科学与技术, 2022, 11(3): 818-833. |
[9] | 冯一峰, 沈佳妮, 车海英, 马紫峰, 贺益君, 谈文, 杨庆亨. 钠离子电池健康状态预测[J]. 储能科学与技术, 2021, 10(4): 1407-1415. |
[10] | 杨瑞, 汪丽莉, 宓一鸣, 刘烨, 吴建宝, 赵新新. 静电纺丝法制备TMO/C复合纳米纤维在锂离子电池负极材料中的应用进展[J]. 储能科学与技术, 2021, 10(4): 1253-1260. |
[11] | 周琳, 杨佯, 胡勇胜. 合金电极失效机制:体积膨胀?电解液分解?[J]. 储能科学与技术, 2021, 10(3): 813-820. |
[12] | 尹坚, 董季玲, 丁皓, 李方. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001. |
[13] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
[14] | 聂雪娇, 郭晋芝, 王美怡, 谷振一, 赵欣欣, 杨旭, 梁皓杰, 吴兴隆. 以废旧锰酸锂正极为原料制备Li0.25Na0.6MnO2钠离子电池正极材料的研究[J]. 储能科学与技术, 2020, 9(5): 1402-1409. |
[15] | 张香华, 骆微, 芮先宏, 余彦. 钠离子电池正极材料VOPO4·2H2O纳米片的合成与电化学性能[J]. 储能科学与技术, 2020, 9(5): 1410-1415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||