储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1657-1667.doi: 10.19799/j.cnki.2095-4239.2020.0209
赖日鑫1(), 姜传建2, 刘琳2(), 张文峰1(), 向宇1, 明海1, 张浩1, 曹高萍1, 杜韫3
收稿日期:
2020-06-11
修回日期:
2020-06-26
出版日期:
2020-11-05
发布日期:
2020-10-28
通讯作者:
刘琳,张文峰
E-mail:15207142156@163.com;lin@cumtb.edu.cn;wenfengzh@163.com
作者简介:
赖日鑫(1997—),男,硕士研究生,主要从事超级电容器炭电极材料研究,E-mail:基金资助:
Rixin LAI1(), Chuanjian JIANG2, Lin LIU2(), Wenfeng ZHANG1(), Yu XIANG1, Hai MING1, Hao ZHANG1, Gaoping CAO1, Yun DU3
Received:
2020-06-11
Revised:
2020-06-26
Online:
2020-11-05
Published:
2020-10-28
Contact:
Lin LIU,Wenfeng ZHANG
E-mail:15207142156@163.com;lin@cumtb.edu.cn;wenfengzh@163.com
摘要:
石墨烯是一种有着多种优异性能的材料,但其表面活性位点少导致在储能等方面应用受限,对石墨烯进行氮原子掺杂是改善其性能的有效途径。石墨烯氮掺杂的方法大体上可以分成两类:一是利用小分子或气体作为氮源和碳源直接合成氮石墨烯的原位氮掺杂,常见方法有化学气相沉积法、溶剂热法、电弧放电法等;二是以石墨烯或氧化石墨烯为原料来进行氮原子引入的后处理氮掺杂,常见方法有热处理法、化学处理法、等离子体处理法等。氮原子以不同的构型进入石墨烯晶格,使得氮掺杂石墨烯具有不同的物理化学性能。作为超级电容器电极材料是氮掺杂石墨烯的一个重要应用,但掺杂氮原子对促进石墨烯电容性能提高的机制仍没有统一的科学结论。本文简要介绍了各种石墨烯氮掺杂方法的特点,重点综述了不同构型氮原子掺杂调控方法的研究进展,梳理了反应温度、前驱体结构、反应能量、氮掺杂量等因素对于生成吡咯型、吡啶型和石墨型等各种不同构型掺杂氮的影响,同时也综述了吡咯型、吡啶型和石墨型三类掺杂氮对石墨烯电容特性影响机制的一些主要观点,并对未来氮掺杂石墨烯的研究方向进行了展望。
中图分类号:
赖日鑫, 姜传建, 刘琳, 张文峰, 向宇, 明海, 张浩, 曹高萍, 杜韫. 石墨烯氮掺杂调控及对电容特性影响机制研究进展[J]. 储能科学与技术, 2020, 9(6): 1657-1667.
Rixin LAI, Chuanjian JIANG, Lin LIU, Wenfeng ZHANG, Yu XIANG, Hai MING, Hao ZHANG, Gaoping CAO, Yun DU. Research progress of the regulation of nitrogen doping of graphene and the influence mechanism of supercapacitor capacitive performance[J]. Energy Storage Science and Technology, 2020, 9(6): 1657-1667.
1 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-674. |
2 | 刘欢, 刘玉, 牟志刚, 等. 石墨烯的功能化研究进展[J]. 化工新型材料, 2020, 48(4): 29-48. |
LIU H, LIU Y, MOU Z G, et al. Recent advance in the functionalization of graphene[J]. New Chemical Materials, 2020, 48(4): 29-48. | |
3 | DENG Y F, XIE Y, ZOU K X, et al. Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(4): 1144-73. |
4 | 林源为, 郭雪峰. 石墨烯表界面化学修饰及其功能调控[J]. 化学学报, 2014, 72(3): 277-88. |
LIN Y W, GUO X F. Chemical modification of graphene and its applications[J]. Acta Chimica Sinica, 2014, 72(3): 277-88. | |
5 | FAN M M, ZHANG Q F, ZHU C L, et al. Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species[J]. Journal of Materials Science, 2016, 51(23): 10323-49. |
6 | EKATERINA A A, ANTON S I, SERGUEI V S, et al. Effect of nitrogen doping of graphene nanoflakes on their efficiency in supercapacitor applications[J]. Functional Materials Letters, 2018, 11(6): 1840005. |
7 | WANG M, CHEN L L, ZHOU J Q, et al. First-principles calculation of quantum capacitance of metals doped graphenes and nitrogen/metals codoped graphenes: designing strategies for supercapacitor electrodes[J]. Journal of Materials Science, 2019, 54(1): 483-492. |
8 | GRANZIER-NAKAJIMA T, FUJISAWA K, ANIL V, et al. Controlling nitrogen doping in graphene with atomic precision: Synthesis and characterization[J]. Nanomaterials, 2019, 9(3): 425. |
9 | LEI H P, TU J G, TIAN D H, et al. Nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors[J]. New Journal of Chemistry, 2018, 42(19): 15684-15691. |
10 | JIANG F, ZHANG J X, LI N, et al. Nitrogen-doped graphene prepared by thermal annealing of fluorinated graphene oxide as supercapacitor electrode[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(11): 3530-3537. |
11 | SUN H J, LIU B, PENG T J, et al. Nitrogen-doped porous 3D graphene with enhanced supercapacitor properties[J]. Journal of Materials Science, 2018, 53(18): 13100-13110. |
12 | 苏鹏, 郭慧林, 彭三, 等. 氮掺杂石墨烯的制备及其超级电容性能[J]. 物理化学学报, 2012, 28(11): 2745-2753. |
SU P,GUO H L,PENG S,et al. Preparation of nitrogen-doped graphene and its supercapacitiveproperties[J]. Acta Phys. -Chim, 2012, 28(11): 2745-2753. | |
13 | KATOH T, IMAMURA G, OBATA S, et al. Growth of N-doped graphene from nitrogen containing aromatic compounds: The effect of precursors on the doped site[J]. RSC Advances, 2016, 6(16): 13392-13399. |
14 | IMAMURA G, SAIKI K. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2011, 115(20): 10000-10005. |
15 | WEI D C, LIU Y Q, WANG Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 7: 1752-1759. |
16 | LUO Z Q, LIM S H, TIAN Z Q, et al. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property[J]. Journal of Materials Chemistry, 2011, 21(22): 8038-8044. |
17 | CUI L Z, CHEN X D, LIU B Z, et al. Highly conductive nitrogen-doped graphene grown on glass toward electrochromic applications[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32622-32630. |
18 | ZAN R, ALTUNTEPE A. Nitrogen doping of graphene by CVD[J]. Journal of Molecular Structure, 2020, 1199: 127026. |
19 | YANG D J, GANG L, FAN W, et al. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors[J]. Applied Surface Science, 2018, 427: 986-993. |
20 | DENG D H, PAN X L, YU L, et al. Toward N-doped graphene via solvothermal synthesis[J]. Chemistry of Materials, 2011, 23(5): 1188-1193. |
21 | LI N, WANG Z Y, ZHAO K K, et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon, 2010, 48(1): 255-263. |
22 | LIN Z Y, WALLER G, LIU Y, et al. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Advanced Energy Materials, 2012, 2(7): 884-891. |
23 | 孙美岩, 苏伟丰, 张珅珅, 等. 碳布负载氮掺杂石墨烯及其电化学性能研究[J]. 硅酸盐通报, 2020, 39(3): 962-969. |
SUN M Y, SU W F, ZHANG K K, et al. Nitrogen-doping graphene loaded on carbon cloth and its electrochemical properties[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 962-969 | |
24 | CHANG D W, CHOI H J, BAEK J B. Wet-chemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015, 3(14): 7659-7665. |
25 | JEONG H M, LEE J W, SHIN W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters, 2011, 11(6): 2472-2478. |
26 | LI S M, YANG S Y, WANG Y S, et al. Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid[J]. Carbon, 2013, 59: 418-429. |
27 | 苏香香, 杨蓉, 李兰, 等. 氮掺杂石墨烯的制备及其在化学储能中的研究进展[J]. 应用化学, 2018, 35(2): 137-146. |
SU X X,YANG R, LI L, et al. Research progress of preparation of nitrogen-doped graphene and its application in chemical energy storage[J]. Chinese Journal of Applied Chemistry, 2018, 35(2): 137-146 | |
28 | WANG H B, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential Applications[J]. ACS Catalysis, 2012, 2(5): 781-794. |
29 | HULICOVA-JURCAKOVA D, KODAMA M, SHIRAISHI S, et al. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance[J]. Advanced Functional Materials, 2009, 19(11): 1800-1809. |
30 | SCHIROS T S, NORDLUND D N, PALOVA L, et al. Connecting dopant bond type with electronic structure in N-doped graphene[J]. Nano Lett., 2012, 12(8): 4025-4031. |
31 | LI J Y, REN Z Y, ZHOU Y X, et al. Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response[J]. Carbon, 2013, 62: 330-336. |
32 | SUI Y P, ZHU B, ZHANG H R, et al. Temperature-dependent nitrogen configuration of N-doped graphene by chemical vapor deposition[J]. Carbon, 2015, 81: 814-820. |
33 | MA R G, REN X D, XIA B Y, et al. Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction[J]. Nano Research, 2016, 9(3): 808-819. |
34 | NING X T, ZHONG W B, LI S C, et al. High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(23): 8859-8867. |
35 | LIN Z Y, WALLER G H, LIU Y, et al. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction[J]. Nano Energy, 2013, 2(2): 241-248. |
36 | YEN H F, HORNG Y Y, HU M S, et al. Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors[J]. Carbon, 2015, 82: 124-134. |
37 | YASUDA S, YU L, KIM J, et al. Selective nitrogen doping in graphene for oxygen reduction reactions[J]. Chem. Commun. (Camb), 2013, 49(83): 9627-9635. |
38 | LEE K H, OH J, SON J G, et al. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6361-6368. |
39 | ZHAO W, HöFERT O, GOTTERBARM K, et al. Production of nitrogen-doped graphene by low-energy nitrogen implantation[J]. The Journal of Physical Chemistry C, 2012, 116(8): 5062-5067. |
40 | SUN J G, WANG L, SONG R R, et al. Enhancing pyridinic nitrogen level in graphene to promote electrocatalytic activity for oxygen reduction reaction[J]. Nanotechnology, 2016, 27(5): 055404. |
41 | CHO Y J, KIM H S, BAIK S Y, et al. Selective nitrogen-doping structure of nanosize graphitic layers[J]. The Journal of Physical Chemistry C, 2011, 115(9): 3737-3744. |
42 | VISHWAKARMA R, KALITA G, SHINDE S M, et al. Structure of nitrogen-doped graphene synthesized by combination of imidazole and melamine solid precursors[J]. Materials Letters, 2016, 177: 89-93. |
43 | ZHONG J, DENG J J, MAO B H, et al. Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy[J]. Carbon, 2012, 50(1): 335-342. |
44 | 沈进冉, 郭翠静, 陈赫, 等. 高性能氮掺杂石墨烯的制备及其储锂性能[J]. 储能科学与技术, 2019, 8(6): 1137-1144. |
SHENG J R, GUO C J, CHEN H, et al. Synthesis and lithium storage property of high-performance N-doped reduced graphene oxide[J]. Energy Storage Science and Technology, 2019, 8(6): 1137-1144. | |
45 | SHENG Z H, SHAO L, CHEN J J, et al. Catalyst-free synthesis of nitrogendoped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6): 4350-4357. |
46 | YANG J, JO M R, KANG M, et al. Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors[J]. Carbon, 2014, 73: 106-113. |
47 | LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 6: 1508-1513. |
48 | PU N W, CHEN C Y, QIU H X, et al. Hydrothermal synthesis of N-doped graphene/Fe2O3 nanocomposite for supercapacitors[J]. International Journal of Electrochemical Science, 2018: 6812-6823. |
49 | HASSAN F M, CHABOT V, LI J, et al. Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(8): 2904-2912. |
50 | 李子庆, 赫文秀, 张永强, 等. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624. |
LI Z Q, HE W X, ZHANG Y Q, et al. Effect of different nitrogen sources on structure and properties of nitrogen-doped graphene[J]. Chinese Journal of Materials Research, 2018, 32(8): 616-624 | |
51 | PELS J R, F K, MOULIJN J A, et al. Evolution of nitrogen functionalities in cabonaceous materials during pyrolysis[J]. Carbon, 1995, 33(11): 1641-1643. |
52 | LIN Y P, KSARI Y, AUBEL D, et al. Efficient and low-damage nitrogen doping of graphene via plasma-based methods[J]. Carbon, 2016, 100: 337-344. |
53 | JIANG B J, TIAN C G, WANG L, et al. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction[J]. Applied Surface Science, 2012, 258(8): 3438-3443. |
54 | SAHU V, GROVER S, TULACHAN B, et al. Heavily nitrogen doped, graphene supercapacitor from silk cocoon[J]. Electrochimica Acta, 2015, 160: 244-253. |
55 | FAN W, XIA Y Y, TJIU W W, et al. Nitrogen-doped graphene hollow nanospheres as novel electrode materials forsupercapacitor applications[J]. Journal of Power Sources, 2013, 9: 973-981. |
56 | LU Y H, HUANG Y, ZHANG M J, et al. Nitrogen-doped graphene materials for supercapacitor applications[J]. J Nanosci Nanotechnol, 2014, 14(2): 1134-1144. |
57 | LEE Y H, CHANG K H, HU C C. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes[J]. Journal of Power Sources, 2013, 227: 300-307. |
58 | TIAN K, LIU W J, ZHANG S, et al. Improving capacitance by introducing nitrogen species and defects into graphene[J]. ChemElectroChem, 2015, 2(6): 859-866. |
59 | CAO H L, ZHOU X F, QIN Z H, et al. Low-temperature preparation of nitrogen-doped graphene for supercapacitors[J]. Carbon, 2013, 56: 218-223. |
60 | SHI X P, ZHU J Y, ZHANG Y, et al. Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors[J]. RSC Advances, 2015, 5(94): 77130-77136. |
61 | WU Y P, LIU X Y, XIA D D, et al. Synthesis of few-layer N-doped graphene from expandable graphite with melamine and its application in supercapacitors[J]. Chinese Chemical Letters, 2020, 31(2): 559-564. |
62 | MORENO-CASTILLA C, DAWIDZIUK M B, CARRASCO-MARíN F, et al. Electrochemical performance of carbon gels with variable surface chemistry and physics[J]. Carbon, 2012, 50(9): 3324-3332. |
63 | ZHU Z H, HATORI H, WANG S B, et al. Insights into hydrogen atom adsorption on and the electrochemical properties of nitrogen-substituted carbon materials[J]. The Journal of Physical Chemistry B, 2005, 109(35): 16744-16752. |
64 | MANPREET K, MANMEET K, K S V. Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, sensors and environment[J]. Advances in Colloid and Interface Science, 2018, 259: 44-64. |
65 | ZHANG L L, ZHAO X, JI H X, et al. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon[J]. Energy & Environmental Science, 2012, 5(11): 9618-9625. |
66 | ZHAN C, ZHANG Y, CUMMINGS P T, et al. Enhancing graphene capacitance by nitrogen: Effects of doping configuration and concentration[J]. Phys. Chem. Chem. Phys., 2016, 18(6): 4668-4674. |
[1] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[2] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[3] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[4] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[5] | 岳博文, 佟佳欢, 刘玉文, 霍锋. 离子液体电解液的模拟计算方法及应用[J]. 储能科学与技术, 2022, 11(3): 897-911. |
[6] | 韩雪, 邓伟, 周旭峰, 刘兆平. 石墨烯在储能领域应用的专利分析[J]. 储能科学与技术, 2022, 11(1): 335-349. |
[7] | 乔亮波, 张晓虎, 孙现众, 张熊, 马衍伟. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. |
[8] | 王凯, 侯朝霞, 李思瑶, 屈晨滢, 王悦, 孔佑健. 可拉伸全固态超级电容器的研究进展[J]. 储能科学与技术, 2021, 10(3): 887-895. |
[9] | 陈帅, 陈灵, 江浩. 氮掺杂无定形氧化钒纳米片阵列用于快充型准固态超级电容器[J]. 储能科学与技术, 2021, 10(3): 945-951. |
[10] | 毕志杰, 赵宁, 郭向欣. 基于氧化钨和普鲁士蓝的可变色超级电容器[J]. 储能科学与技术, 2021, 10(3): 952-957. |
[11] | 凤睿, 卢海, 刘心毅, 李浩, 李祥元. 正负极质量非对称设计对超级电容器性能的影响研究[J]. 储能科学与技术, 2021, 10(2): 491-496. |
[12] | 李向东, 廉睿, 吴佳美, 唐良辉, 乔志军, 阮殿波. 基于Fluent的超级电容器模组充放电循环的热仿真分析[J]. 储能科学与技术, 2021, 10(2): 732-737. |
[13] | 陈雪龙, 张 希, 许传华, 于学文, 阮殿波, 乔志军, 汪 俊, 王朝阳. 大容量动力型超级电容器存储性能[J]. 储能科学与技术, 2021, 10(1): 198-201. |
[14] | 朱佳静, 高筠. Water-in-salt电解液研究进展[J]. 储能科学与技术, 2020, 9(S1): 13-22. |
[15] | 朱蓝方, 刘冰. 石墨烯面间距和碳纳米管直径对双电层电容器电容的影响[J]. 储能科学与技术, 2020, 9(6): 1720-1728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||