储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1657-1667.doi: 10.19799/j.cnki.2095-4239.2020.0209

• 储能材料与器件 • 上一篇    下一篇

石墨烯氮掺杂调控及对电容特性影响机制研究进展

赖日鑫1(), 姜传建2, 刘琳2(), 张文峰1(), 向宇1, 明海1, 张浩1, 曹高萍1, 杜韫3   

  1. 1.军事科学院防化研究院,北京 100191
    2.中国矿业大学(北京)机电与信息工程学院,北京 100083
    3.后勤保障部军需能源局,北京 100039
  • 收稿日期:2020-06-11 修回日期:2020-06-26 出版日期:2020-11-05 发布日期:2020-10-28
  • 通讯作者: 刘琳,张文峰 E-mail:15207142156@163.com;lin@cumtb.edu.cn;wenfengzh@163.com
  • 作者简介:赖日鑫(1997—),男,硕士研究生,主要从事超级电容器炭电极材料研究,E-mail:15207142156@163.com
  • 基金资助:
    国家自然科学基金面上项目(21875283)

Research progress of the regulation of nitrogen doping of graphene and the influence mechanism of supercapacitor capacitive performance

Rixin LAI1(), Chuanjian JIANG2, Lin LIU2(), Wenfeng ZHANG1(), Yu XIANG1, Hai MING1, Hao ZHANG1, Gaoping CAO1, Yun DU3   

  1. 1.Research Institute of Chemical Defense, Academy of Military Science, Beijing 100191, China
    2.School of Mechanical Electronic & Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
    3.Military Energy Bureau of Logistics Support Department, Beijing 100039, China
  • Received:2020-06-11 Revised:2020-06-26 Online:2020-11-05 Published:2020-10-28
  • Contact: Lin LIU,Wenfeng ZHANG E-mail:15207142156@163.com;lin@cumtb.edu.cn;wenfengzh@163.com

摘要:

石墨烯是一种有着多种优异性能的材料,但其表面活性位点少导致在储能等方面应用受限,对石墨烯进行氮原子掺杂是改善其性能的有效途径。石墨烯氮掺杂的方法大体上可以分成两类:一是利用小分子或气体作为氮源和碳源直接合成氮石墨烯的原位氮掺杂,常见方法有化学气相沉积法、溶剂热法、电弧放电法等;二是以石墨烯或氧化石墨烯为原料来进行氮原子引入的后处理氮掺杂,常见方法有热处理法、化学处理法、等离子体处理法等。氮原子以不同的构型进入石墨烯晶格,使得氮掺杂石墨烯具有不同的物理化学性能。作为超级电容器电极材料是氮掺杂石墨烯的一个重要应用,但掺杂氮原子对促进石墨烯电容性能提高的机制仍没有统一的科学结论。本文简要介绍了各种石墨烯氮掺杂方法的特点,重点综述了不同构型氮原子掺杂调控方法的研究进展,梳理了反应温度、前驱体结构、反应能量、氮掺杂量等因素对于生成吡咯型、吡啶型和石墨型等各种不同构型掺杂氮的影响,同时也综述了吡咯型、吡啶型和石墨型三类掺杂氮对石墨烯电容特性影响机制的一些主要观点,并对未来氮掺杂石墨烯的研究方向进行了展望。

关键词: 石墨烯氮掺杂, 掺杂氮构型, 调控方法, 超级电容器, 作用机制

Abstract:

Graphene is a material with excellent properties, but its applications (e.g., energy storage) are limited because of its few surface-active sites. Nitrogen atom doping is an effective method for improving graphene properties. Nitrogen doping methods can generally be divided into two categories: 1) direct-doping, which uses small molecules or gases as nitrogen and carbon sources to perform an in-situ synthesis of nitrogen-doped graphene (e.g., chemical vapor deposition, solvothermal, and arc discharge methods); and 2) post-synthesis, which uses graphene or graphene oxide as raw materials to achieve nitrogen doping (e.g., thermal method, chemical treatment, and plasma method). Nitrogen-doped graphene shows different physical and chemical properties because of the various structural types of nitrogen atom entering the graphene lattice. As the electrode material of supercapacitors, which are an important application of nitrogen-doped graphene, no unified scientific conclusion has yet been provided as regards the mechanism of nitrogen doping to improve the capacitive performance. This study briefly introduces the characteristics of various graphene nitrogen doping methods and reviews the research progress of nitrogen atom doping control methods with different configurations. The effects of the reaction temperature, precursor structure, reaction energy, and nitrogen doping amount on the formation of the pyrrole-, pyridine-, and graphite-type doped nitrogen with different configurations are reviewed. Some main viewpoints on the influence mechanism of the pyrrole-, pyridine-, and graphite-type doped nitrogen on the capacitance characteristics of graphene are summarized. Finally, the future research direction of nitrogen-doped graphene is previewed.

Key words: nitrogen doping of grapheme, configurations of doped nitrogen, regulation method, supercapacitors, mechanism

中图分类号: