储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1668-1677.doi: 10.19799/j.cnki.2095-4239.2020.0171
收稿日期:
2020-05-11
修回日期:
2020-05-30
出版日期:
2020-11-05
发布日期:
2020-10-28
通讯作者:
蒋峰景
E-mail:dingyuguo@sjtu.edu.cn;jfjzz@sjtu.edu.cn
作者简介:
郭定域(1996—),男,硕士研究生,从事液流电池储能研究,E-mail:Dingyu GUO(), Fengjing JIANG(), Zhuhan ZHANG
Received:
2020-05-11
Revised:
2020-05-30
Online:
2020-11-05
Published:
2020-10-28
Contact:
Fengjing JIANG
E-mail:dingyuguo@sjtu.edu.cn;jfjzz@sjtu.edu.cn
摘要:
液流电池作为大规模储能技术,具有广泛的应用前景。但是目前主流液流电池由于成本过高导致商业化进程缓慢。利用液流电池技术实现大规模储能需要大量包含电化学活性物质的电解液,通常由不同价态的金属、离子化合物、溶剂及添加剂组成。由于铁元素具有储量丰富、环保无污染等优点,铁单质或铁的化合物是液流电池的正负极活性物质的理想材料,受到了研究人员的广泛关注。基于现有的研究工作,综述了不同类型的铁基混合液流电池和全液流电池的研究进展,梳理讨论了形成不同铁液流电池性能差异的影响因素如析氢、溶解度、电导率、反应动力学等,最后总结并展望了铁基液流电池的发展趋势和前景,提出需要进一步研究降低电极析氢的措施,探索经济且活性物质易回收的方案,提高电极的稳定性,并探索新的电极结构和水系液流电池体系。
中图分类号:
郭定域, 蒋峰景, 张竹涵. 铁基氧化还原液流电池研究进展及展望[J]. 储能科学与技术, 2020, 9(6): 1668-1677.
Dingyu GUO, Fengjing JIANG, Zhuhan ZHANG. Research progresses in iron-based redox flow batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677.
1 | DARLING R M, GALLAGHER K G, KOWALSKI J A, et al. Pathways to low-cost electrochemical energy storage: A comparison of aqueous and nonaqueous flow batteries[J]. Energy Environ Sci, 2014, 7(11): 3459-3477. |
2 | SKYLLAS-KAZACOS M. Performance improvements and cost considerations of the vanadium redox flow battery[J]. ECS Transactions, 2019, 89(1): 29-45. |
3 | SOLOVEICHIK G L. Flow batteries: Current status and trends[J]. Chem Rev, 2015, 115(20): 11533-11558. |
4 | ESS I. Cleanest, lowest cost long-duration storage with no capacity degradation[R/OL]. [2020-05-28]. . |
5 | IBANEZ J G, CHOI C S, BECKER R S. Aqueous redox transition metal complexes for electrochemical applications as a function of pH[J]. Journal of the Electrochemical Society, 1987, 134(12): 3083-3089. |
6 | HAWTHORNE K L, WAINRIGHT J S, SAVINELL R F. Studies of iron-ligand complexes for an all-iron flow battery application[J]. Journal of the Electrochemical Society, 2014, 161(10): A1662-A1671. |
7 | HAWTHORNE K L, PETEK T J, MILLER M A, et al. An investigation into factors affecting the iron plating reaction for an all-iron flow battery[J]. Journal of the Electrochemical Society, 2014, 162(1): A108-A113. |
8 | DANILOV F I, PROTSENKO V S, UBIIKON A V. Kinetic regularities governing the reaction of electrodeposition of iron from solutions of citrate complexes of iron(III)[J]. Russian Journal of Electrochemistry, 2004, 41(12): 1282-1289. |
9 | JAYATHILAKE B S, PLICHTA E J, HENDRICKSON M A, et al. Improvements to the coulombic efficiency of the iron electrode for an all-iron redox-flow battery[J]. Journal of the Electrochemical Society, 2018, 165(9): A1630-A1638. |
10 | MANOHAR A K, KIM K M, PLICHTA E, et al. A high efficiency iron-chloride redox flow battery for large-scale energy storage[J]. Journal of the Electrochemical Society, 2015, 163(1): A5118-A5125. |
11 | HRUSKA L W, SAVINELL R F. Investigation of factors affecting performance of the iron-redox battery[J]. J Electrochem,1981, 128(1): 18-25. |
12 | JEYAPRABHA C, SATHIYANARAYANAN S, MURALIDHARAN S. Corrosion inhibition of iron in 0.5 mol/L H2SO4 by halide ions[J]. J Braz Chem Soc, 2006, 17(1): 61-67. |
13 | SANECKI P A T, SKITA P M, KACZMARSKI K. The mathematical models of the stripping voltammetry metal deposition/dissolution process[J]. Electrochimica Acta, 2010, 55(5): 1598-1604. |
14 | SONG Y, LI X, YAN C, et al. Unraveling the viscosity impact on volumetric transfer in redox flow batteries[J]. Journal of Power Sources, 2020, 456: doi: 10.1016/j.jpowsour.2020.228004. |
15 | GAO L, ZHOU X, DING Y. Effective thermal and electrical conductivity of carbon nanotube composites[J]. Chemical Physics Letters, 2007, 434(4/5/6): 297-300. |
16 | YOUSSRY M, MADEC L C, SOUDAN P, et al. Non-aqueous carbon black suspensions for lithium-based redox flow batteries: Rheology and simultaneous rheo-electrical behavior[J]. Physical Chemistry Chemical Physics, 2013, 15(34): doi: 10.1039/C3CP51371H. |
17 | DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechargeable flow battery[J]. Advanced Energy Materials, 2011, 1(4): 511-516. |
18 | MADEC L, YOUSSRY M, CERBELAUD M. Electronic vs ionic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of the Electrochemical Society, 2014, 161(5): A693-A699. |
19 | HOYT N C, WAINRIGHT J S, SAVINELL R F. Mathematical modeling of electrochemical flow capacitors[J]. Journal of the Electrochemical Society, 2015, 162(4): A652-A657. |
20 | VISWANATHAN V, CRAWFORD A, STEPHENSON D, et al. Cost and performance model for redox flow batteries[J]. Journal of Power Sources, 2014, 247: 1040-1051. |
21 | PETEK T J, HOYT N C, SAVINELL R F, et al. Slurry electrodes for iron plating in an all-iron flow battery[J]. Journal of Power Sources, 2015, 294,620-6. |
22 | PETEK T J, HOYT N C, SAVINELL R F, et al. Characterizing slurry electrodes using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2016, 163(1): A5001-A5009. |
23 | CHEN Y W, SANTHANAM K S. Solution redox couples for electrochemical energy storage[J]. Journal of the Electrochemical Society, 1981, 128(7): doi: 10.1149/1.2127663. |
24 | MURTHY A S N, SRIVASTAVA T. Fe(III)/Fe(II) - ligand systems for use as negative half-cells in redox-flow cells[J]. Journal of Power Sources, 1989, 27(2): 119-126. |
25 | WEN Y H, ZHANG H M, QIAN P, et al. Studies on iron (Fe3+/Fe2+-complex/bromine (Br2/Br-) redox flow cell in sodium acetate solution[J]. Journal of the Electrochemical Society, 2006, 153(5): A929-A934. |
26 | WATERS S E, ROBB B H, MARSHAK M P. Effect of chelation on iron-chromium redox flow batteries[J]. ACS Energy Letters, 2020: 1758-1762. |
27 | WANG H, LIANG Y, GONG M, et al. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials[J]. Nat Commun, 2012, 3(6): doi: 10.1038/ncomms1921. |
28 | JAYALAKSHMI N. Developmental studies on porous iron electrodes for the nickel_iron cell[J]. Journal of Power Sources, 1990, 32(4): 341-351. |
29 | KALAIGNAN G P, MURALIDHARAN V S, VASU K I. Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions[J]. Journal of Applied Electrochemistry, 1987, 17(5): 1083-1092. |
30 | GUZMÁN R S S, VILCHE J R, ARVÍA A J. The potentiodynamic behaviour of iron in alkaline solutions[J]. Electrochimica Acta, 1979, 24(4): 395-403. |
31 | MURALIDHARAN V S, VEERASHANMUGAMANI M. Electrochemical behaviour of pure iron in concentrated sodium hydroxide solutions at different temperatures: A triangular potential sweep voltammetric study[J]. Journal of Applied Electrochemistry, 1985, 15(5): 675-683. |
32 | 王立民. 镍铁电池的工业应用及最新研究进展[J]. 应用化学, 2014, 31(7): doi: 10.3724/SP.J.1095.2014.30353. |
WANG L M. Industrial application and latest research progress of nickel-iron battery[J]. Applied Chemistry, 2014, 31(7): doi: 10.3724/SP.J.1095.2014.30353. | |
33 | KAO C Y, CHOU K S. Iron/carbon-black composite nanoparticles as an iron electrode material in a paste type rechargeable alkaline battery[J]. Journal of Power Sources, 2010, 195(8): 2399-2404. |
34 | BAN C, WU Z, GILLASPIE D T, et al. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode[J]. Adv Mater, 2010, 22(20): E145-149. |
35 |
PIAO Y, KIM H, SUNG Y E, et al. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries[J]. Chemical Communications, 2010, doi: 10.1039/b920037a.
doi: 10.1039/b920037a |
36 | ZHANG W M, WU X L, HU J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J]. Advanced Functional Materials, 2008, 18(24): 3941-3946. |
37 | WU X, WU H B, XIONG W, et al. Robust iron nanoparticles with graphitic shells for high-performance Ni-Fe battery[J]. Nano Energy, 2016, 30: 217-224. |
38 | UJIMINE K, TSUTSUMI A. Electrochemical characteristics of iron carbide as an active material in alkaline batteries[J]. Journal of Power Sources, 2006, 160(2): 1431-1435. |
39 | WEI L, WU M C, ZHAO T S, et al. An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage[J]. Applied Energy, 2018, 215: 98-105. |
40 | LI Z, WENG G, ZOU Q, et al. A high-energy and low-cost polysulfide/iodide redox flow battery[J]. Nano Energy, 2016, 30: 283-292. |
41 |
JIANG F, HE Z, GUO D, et al. Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries[J]. Journal of Power Sources, 2019, doi: 10.1016/j.jpowsour.2019.227114.
doi: 10.1016/j.jpowsour.2019.227114 |
42 | ARENAS L F, PONCE D L C, WALSH F C. Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage[J]. Journal of Energy Storage, 2017, 11: 119-153. |
43 |
ZHU J, LI L, XIONG Z H, et al. Evolution of useless iron rust into uniform α-Fe2O3 nanospheres: A smart way to make sustainable anodes for hybrid Ni-Fe cell devices[J]. ACS Sustainable Chemistry & Engineering, 2016, doi: 10.1021/acssuschemeng.6b01527.
doi: 10.1021/acssuschemeng.6b01527 |
44 | HANG B T, WATANABE T, EGASHIRA M, et al. The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode[J]. Journal of Power Sources, 2006, 155(2): 461-469. |
45 | SKYLLAS-KAZACOS M, CHAKRABARTI M H, HAJIMOLANA S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, 158(8): R55-R79. |
46 | VIJAYAMOHANAN K, BALASUBRAMANIAN T S, SHUKLA A K. Rechargeable alkaline iron electrodes[J]. Journal of Power Sources, 1991, 34(3): 269-285. |
47 | CALDAS C A, LOPES M C, CARLOS I A. The role of FeS and (NH4)2CO3 additives on the pressed type Fe electrode[J]. Journal of Power Sources, 1998, 74(1): 108-112. |
48 | VIJAYAMOHANAN K, SHUKIA A K, SATHYANARAYANA S. Role of sulphide additives on the performance of alkaline iron electrodes[J]. Journal of Electroanalytical Chemistry, 1990, 289(1/2): 55-68. |
49 | CARTA R, DERNINI S, POLCARO A M, et al. The influence of sulphide environment on hydrogen evolution at a stainless steel cathode in alkaline solution[J]. Cheminform, 1988, 257(1/2): 257-268. |
50 | MANOHAR A K, MALKHANDI S, YANG B, et al. A high-performance rechargeable iron electrode for large-scale battery-based energy storage[J]. Journal of the Electrochemical Society, 2012, 159(8): A1209-A1214. |
51 | MANOHAR A K, YANG C, MALKHANDI S, et al. Enhancing the performance of the rechargeable iron electrode in alkaline batteries with bismuth oxide and iron sulfide additives[J]. Journal of the Electrochemical Society, 2013, 160(11): A2078-A2084. |
52 | GABE D R. The role of hydrogen in metal electrodeposition processes[J]. Journal of Applied Electrochemistry, 1997, 27(8): 908-915. |
53 | BO Y, MALKHANDI S, MANOHAR A K, et al. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage[J]. Energy & Environmental Science, 2014, 7(8): 2753-2763. |
54 | MALKHANDI S, YANG B, MANOHAR A K, et al. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes[J]. J Am Chem Soc, 2013, 135(1): 347-353. |
55 | WEN Y H, ZHANG H M, QIAN P, et al. A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application[J]. Electrochimica Acta, 2006, 51(18): 3769-3775. |
56 | GONG K, XU F, GRUNEWALD J B, et al. All-soluble all-iron aqueous redox-flow battery[J]. ACS Energy Letters, 2016, 1(1): 89-93. |
57 | LIN K, CHEN Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532. |
58 | HUSKINSON B, MARSHAK M P, SUH C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198. |
59 | YUAN Z, LIU X, XU W, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nat Commun, 2018, 9(1): doi: 10.1038/s41467-018-06209-x. |
60 | YAMAGUCHI T, BOETJE L M, KOVAL C A, et al. Transport properties of carbon dioxide through amine functionalized carrier membranes[J]. Industrial & Engineering Chemistry Research, 1995, 34(11): 4071-4077. |
61 | YAMAGUCHI T, KOVAL C A, NOBLE R D, et al. Transport mechanism of carbon dioxide through perfluorosulfonate ionomer membranes containing an amine carrier[J]. Chemical Engineering Science, 1996, 51(21): 4781-4789. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置[J]. 储能科学与技术, 2022, 11(7): 2241-2249. |
[4] | 韩健民, 薛飞宇, 梁双印, 乔天舒. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
[5] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[6] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[7] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[8] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
[9] | 袁性忠, 胡斌, 郭凡, 严欢, 贾宏刚, 苏舟. 欧盟储能政策和市场规则及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2344-2353. |
[10] | 刘国静, 李冰洁, 胡晓燕, 岳芬, 徐际强. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2332-2343. |
[11] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[12] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[13] | 吴田, 林闽城, 海浩, 孙海渔, 温兆银, 马福元. 面向一次调频的镍氢电池系统开发[J]. 储能科学与技术, 2022, 11(7): 2213-2221. |
[14] | 徐光福, 姜淼, 王万纯, 魏阳, 侯炜. 大型储能电池短路故障分析与保护策略[J]. 储能科学与技术, 2022, 11(7): 2222-2232. |
[15] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||