储能科学与技术 ›› 2020, Vol. 9 ›› Issue (S1): 13-22.doi: 10.19799/j.cnki.2095-4239.2020.0263
收稿日期:
2020-08-17
修回日期:
2020-09-03
出版日期:
2020-12-05
发布日期:
2020-12-02
通讯作者:
高筠
E-mail:1799047518@qq.com;gaoyun@ncst.edu.cn
作者简介:
朱佳静(1996—),女,硕士研究生,研究方向为材料电化学,E-mail:基金资助:
Received:
2020-08-17
Revised:
2020-09-03
Online:
2020-12-05
Published:
2020-12-02
Contact:
Yun GAO
E-mail:1799047518@qq.com;gaoyun@ncst.edu.cn
摘要:
电解质是电化学能量存储(EES)设备的重要组成部分之一,在器件性能上起着决定性作用。在种类繁多的电解质中,water-in-salt(WIS)电解液凭借独特的溶剂配位能力将水溶液的电化学稳定窗口拓宽到了3.0 V以上,同时具备水系电解液安全、低成本以及绿色环保等优势,未来发展前景十分广阔。综述了国内外关于WIS电解液的最新研究进展,主要从电解质盐、电解质添加剂、WIS电解液在电化学上的应用及面临的问题与挑战四个方面进行了介绍。针对电解质盐着重描述了其中基于磺酰亚胺的几种常见氟化盐和乙酸钾、乙酸钠及乙酸锂等乙酸盐,分析了通过以单一盐或多盐形式配制的WIS电解液对超级电容器和电池的电化学性能的影响。对于引入的电解质添加剂,主要是包括乙腈(AN)、碳酸二甲酯(DMC)及碳酸丙烯酯(PC)等有机溶剂,简单介绍了离子液体和羧甲基纤维素(CMC)作为助溶剂对电极材料性能的提升。WIS电解液的应用主要围绕在一些常规电解质中无法使用或者性能较差的电极材料,还有其衍生出来的solvent-in-salt体系进行说明。最后,提出了目前WIS电解液面临的问题与挑战以及此类电解液的研究方向。
中图分类号:
朱佳静, 高筠. Water-in-salt电解液研究进展[J]. 储能科学与技术, 2020, 9(S1): 13-22.
Jiajing ZHU, Yun GAO. Research progress of water-in-salt electrolytes[J]. Energy Storage Science and Technology, 2020, 9(S1): 13-22.
1 | YAN Xiaojun, ZHAO Xiaoli, LIU Congcong, et al. High-voltage bi-redox lithium-ion capacitor enabled by energizing free water in "water-in-salt" electrolyte[J]. Journal of Power Sources, 2019, 423: 331-338. |
2 | SUO Liumin, BORODIN O, GAO Tao, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
3 | 周安行, 蒋礼威, 岳金明, 等. Water-in-salt锂离子电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 972-986. |
ZHOU Anxing, JIANG Liwei, YUE Jinming, et al. Research progress on lithium based water-in-salt electrolytes[J]. Energy Storage Science and Technology, 2018, 7(6): 972-986. | |
4 | LUX S F, TERBORG L, HACHMOELLER O, et al. LiTFSI stability in water and its possible use in aqueous lithium-ion batteries: pH dependency, electrochemical window and temperature stability[J]. Journal of the Electrochemical Society, 2013, 160(10): A1694-A1700. |
5 | PAPPENFUS T M, HENDERSON W A, OWENS B B, et al. Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials[J]. Journal of the Electrochemical Society, 2004, 151(2): A209-A215. |
6 | SUO Liumin, HAN Fudong, FAN Xiulin, et al. "Water-in-salt" electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications[J]. Journal of Materials Chemistry A, 2016, 4(17): 6639-6644. |
7 | LANNELONGUE P, BOUCHAL R, MOURAD E, et al. "Water-in-salt" for supercapacitors: A compromise between voltage, power density, energy density and stability[J]. Journal of the Electrochemical Society, 2018, 165(3): A657-A663. |
8 | 闫小军. 基于电解液功能调控的高电压水系超级电容器研究[D]. 上海: 华东师范大学, 2019. |
YAN Xiaojun. The study of high-voltage aqueous supercapacitors based on functional regulation of electrolytes[D]. Shanghai: East China Normal University, 2019. | |
9 | CHEN Long, ZHANG Jiaxun, LI Qin, et al. A 63 m super-concentrated aqueous electrolyte for high energy Li-ion batteries[J]. ACS Energy Letters, 2020, 5(3): 968-974. |
10 | SUO Liumin, BORODIN O, SUN Wei, et al. Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-bisalt" electrolyte[J]. Angewandte Chemie International Edition, 2016, 55(25): 7136-7141. |
11 | JIANG Liwei, LIU Lilu, YUE Jinming, et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte[J]. Advanced Materials, 2019, 32(2): doi: 10.1002/adma.201904427. |
12 | BECKER M, KUHNEL R S, BATTAGLIA C. Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below -10 ℃[J]. Chemical Communications, 2019, 55(80): 12032-12035. |
13 | JIANG Liwei, LU Yaxiang, ZHAO Chenglong, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503. |
14 | CHEN Hong, ZHANG Zhongyu, WEI Zhixuan, et al. Use of a water-in-salt electrolyte to avoid organic material dissolution and enhance the kinetics of aqueous potassium ion batteries[J]. Sustainable Energy & Fuels, 2020, 4(1): 128-131. |
15 | KO S, YAMADA Y, YAMADA A. A 62 m K-ion aqueous electrolyte[J]. Electrochemistry Communications, 2020, 116: doi: 10.1016/j.elecom. 2020.106764. |
16 | REBER D, KUHNEL R S, BATTAGLIA C. Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries[J]. ACS Materials Letters, 2019, 1(1): 44-51. |
17 | QIU Feilong, LI Xiang, DENG Han, et al. A concentrated ternary‐salts electrolyte for high reversible Li metal battery with slight excess Li[J]. Advanced Energy Materials, 2018, 9(6): doi: 10.1002/aenm.201803372. |
18 | TIAN Zengying, DENG Wenjun, WANG Xusheng, et al. Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors[J]. Functional Materials Letters, 2017, 10(6): doi: 10.1142/S1793604717500813. |
19 | HAN Jin, MARIANI A, ZHANG Huang, et al. Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries[J]. Energy Storage Materials, 2020, 30: 196-205. |
20 | LEONARD D P, WEI Zhixuan, CHEN Gang, et al. Water-in-salt electrolyte for potassium-ion batteries[J]. ACS Energy Letters, 2018, 3(2): 373-374. |
21 | HAN Jin, ZHANG Huang, VARZI A, et al. Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries[J]. ChemSusChem, 2018, 11(21): 3704-3707. |
22 | LUKATSKAYA M R, FELDBLYUM J I, MACKANIC D G, et al. Concentrated mixed cation acetate "water-in-salt" solutions as green and low-cost high voltage electrolytes for aqueous batteries[J]. Energy & Environmental Science, 2018, 11(10): 2876-2883. |
23 | CHEN Shigang, LAN Rong, HUMPHREYS J, et al. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery[J]. Energy Storage Materials, 2020, 28: 205-215. |
24 | BU Xudong, SU Lijun, DOU Qingyun, et al. A low-cost "water-in-salt" electrolyte for a 2.3 V high-rate carbon-based supercapacitor[J]. Journal of Materials Chemistry A, 2019, 7(13): 7541-7547. |
25 | LEE M H, KIM S J, CHANG D H, et al. Toward a low-cost high-voltage sodium aqueous rechargeable battery[J]. Materials Today, 2019, 29: 26-36. |
26 | DOU Qingyun, LU Yulan, SU Lijun, et al. A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5 V carbon-based supercapacitor[J]. Energy Storage Materials, 2019, 23: 603-609. |
27 | GUO Junhong, MA Yalan, ZHAO Kun, et al. High-performance and ultra-stable aqueous supercapacitors based on a green and low cost "water-in-salt" electrolyte[J]. ChemElectroChem, 2019, 6(21): 5433-5438. |
28 | ZHANG Chong, HOLOUBEK J, WU Xianyong, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode[J]. Chemical Communications, 2018, 54(100): 14097-14099. |
29 | HONG J J, ZHU Liangdong, CHEN Cheng, et al. A dual plating battery with the iodine/[ZnIx(OH2)4-x]2-x cathode[J]. Angewandte Chemie International Edition, 2019, 58(44): 15910-15915. |
30 | IAMPRASERTKUN P, EJIGU A, DRYFE R A W. Understanding the electrochemistry of "water-in-salt" electrolytes: Basal plane highly ordered pyrolytic graphite as a model system[J]. Chemical Science, 2020, 11(27): 6978-6989. |
31 | DOU Qingyun, LEI Shulai, WANG Dawei, et al. Safe and high-rate supercapacitors based on "acetonitrile/water in salt" hybrid electrolyte[J]. Energy & Environmental Science, 2018, 11(11): 3212-3219. |
32 | CHEN Jiawei, VATAMANU J, XING Lidan, et al. Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes[J]. Advanced Energy Materials, 2019, 10(3): doi: 10.1002/aenm.201902654. |
33 | WANG Fei, BORODIN O, DING M S, et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries[J]. Joule, 2018, 2(5): 927-937. |
34 | DONG Chenhao, KANG Wei, AN Cuihua. A safe propylene carbonate/water hybrid electrolyte for supercapacitors[J]. New Journal of Chemistry, 2020, 44(2): 556-561. |
35 | XIAO Dewei, DOU Qingyun, ZHANG Li, et al. Optimization of organic/water hybrid electrolytes for high-rate carbon-based supercapacitor[J]. Advanced Functional Materials, 2019, 29(42): doi: 10.1002/adfm.201904136. |
36 | REBER D, JIMENEZ-RIOBOO R J, LEECH D, et al. Aqueous eutectic-in-salt electrolytes for high-energy-density supercapacitors with an operational temperature window of 100 ℃, from -35 to +65 ℃[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29181-29193. |
37 | YANG Yangyuchen, DAVIES D M, YIN Yijie, et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes[J]. Joule, 2019, 3(8): 1986-2000. |
38 | WANG Weijian, DENG Wenjun, WANG Xusheng, et al. A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors[J]. Chemical Communications, 2020, 56(57): 7965-7968. |
39 | GAO Yun, QIN Zhanbin, GUAN Li, et al. Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures[J]. Chemical Communications, 2015, 51(54): 10819-10822. |
40 | DOU Qingyun, WANG Yue, WANG Aiping, et al. "Water in salt/ionic liquid" electrolyte for 2.8 V aqueous lithium-ion capacitor[J]. Science Bulletin, 2020, 65(21): 1812-1822. |
41 | YAN Jingjing, ZHU Dazhang, LYU Yaokang, et al. Water-in-salt electrolyte ion matched N/O codoped porous carbons for high-performance supercapacitors[J]. Chinese Chemical Letters, 2020, 31(2): 579-582. |
42 | ZHANG Ming, LI Yaoting, SHEN Zhongrong. "Water-in-salt" electrolyte enhanced high voltage aqueous supercapacitor with all-pseudocapacitive metal-oxide electrodes[J]. Journal of Power Sources, 2019, 414: 479-485. |
43 | MA Mingyu, SHI Zude, LI Yan, et al. High-performance 3 V "water in salt" aqueous asymmetric supercapacitors based on VN nanowire electrodes[J]. Journal of Materials Chemistry A, 2020, 8(9): 4827-4835. |
44 | YANG Chongyin, CHEN Ji, JI Xiao, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250. |
45 | KUNDURACI M, MUTLU R N, GIZIR A M. Electrochemical behavior of LiNi0.6Mn0.2Co0.2O2 cathode in different aqueous electrolytes[J]. Ionics, 2020, 26(4): 1633-1672. |
46 | DONG Xiaoli, YU Hongchuan, MA Yuanyuan, et al. All-organic rechargeable battery with reversibility supported by "water-in-salt" electrolyte[J]. Chemistry—A European Journal, 2017, 23(11): 2560-2565. |
47 | OKA K, STRIETZEL C, EMANUELSSON R, et al. Characterization of PEDOT-Quinone conducting redox polymers in water-insalt electrolytes for safe and high-energy Li-ion batteries[J]. Electrochemistry Communications, 2019, 105: doi: 10.1016/j.electron.2019.106489. |
48 | SUN Wei, SUO Liumin, WANG Fei, et al. "Water-in-salt" electrolyte enabled LiMn2O4/TiS2 lithium-ion batteries[J]. Electrochemistry Communications, 2017, 82: 71-74. |
49 | WANG Huaiqing, ZHANG Hongzhang, CHENG Yi, et al. All-NASICON LVP-LTP aqueous lithium ion battery with excellent stability and low-temperature performance[J]. Electrochimica Acta, 2018, 278: 279-289. |
50 | XIANG Li, OU Xuewu, WANG Xingyong, et al. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery[J]. Angewandte Chemie International Edition, 2020, 59(41): 17924-17930. |
51 | ZHU Jiaojiao, XU Yongtai, FU Yujun, et al. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries[J]. Small, 2020, 16(17): doi: 10.1002/smll.201905838. |
52 | SUO Liumin, XUE Weijiang, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1156-1161. |
53 | YANG Chongyin, JI Xiao, FAN Xiulin, et al. Flexible aqueous Li-ion battery with high energy and power densities[J]. Advanced Materials, 2017, 29(44): doi: 10.1002/adma.201701972. |
54 | YANG Chongyin, SUO Liumin, BORODIN O, et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6197-6202. |
55 | DONG Qi, YAO Xiahui, ZHAO Yanyan, et al. Cathodically stable Li-O2 battery operations using water-in-salt electrolyte[J]. Chem, 2018, 4(6): 1345-1358. |
56 | HU Zhiqiu, GUO Yue, JIN Hongchang, et al. A rechargeable aqueous aluminum-sulfur battery through acid activation in water-in-salt electrolyte[J]. Chemical Communications, 2020, 56(13): 2023-2026. |
57 | CHEN Long, CAO Longsheng, JI Xiao, et al. Enabling safe aqueous lithium ion open batteries by suppressing oxygen reduction reaction[J]. Nature Communications, 2020, 11(1): 2638-2645. |
58 | YAMADA Y, WANG Jianhui, KO Seongjae, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. |
59 | CHEN Shuru, ZHENG Jianming, MEI Donghai, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): doi: 10.1002/adma.201706102. |
60 | REN Xiaodi, ZOU Lianfeng, CAO Xia, et al. High-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676. |
61 | FORERO-SABOYA J, HOSSEINI-BAB-ANARI E, ABDELHAMID M E, et al. Water-in-bisalt electrolyte with record salt concentration and widened electrochemical stability window[J]. Journal of Physical Chemistry Letters, 2019, 10(17): 4942-4946. |
62 | YU Zhou, CURTISS L A, WINANS R E, et al. Asymmetric composition of ionic aggregates and the origin of high correlated transference number in water-in-salt electrolytes[J]. Journal of Physical Chemistry Letters, 2020, 11(4): 1276-1281. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[3] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[4] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[5] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[8] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[9] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[10] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[11] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[12] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[13] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[14] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[15] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||