储能科学与技术 ›› 2020, Vol. 9 ›› Issue (S1): 52-61.doi: 10.19799/j.cnki.2095-4239.2020.0207
王旭东2(), 尹钊1,3(), 刘畅1, 张华良1,3, 徐玉杰2, 陈海生1,3,4, 周学志4
收稿日期:
2020-06-09
修回日期:
2020-07-10
出版日期:
2020-12-05
发布日期:
2020-12-02
通讯作者:
尹钊
E-mail:energywxd@163.com;yinzhao-2008@163.com
作者简介:
王旭东(1986—),男,高级工程师,研究方向为能量转换与储存,E-mail:基金资助:
Xudong WANG2(), Zhao YIN1,3(), Chang LIU1, Hualiang ZHANG1,3, Yujie XU2, Haisheng CHEN1,3,4, Xuezhi ZHOU4
Received:
2020-06-09
Revised:
2020-07-10
Online:
2020-12-05
Published:
2020-12-02
Contact:
Zhao YIN
E-mail:energywxd@163.com;yinzhao-2008@163.com
摘要:
先进储能技术与设备已成为现代高科技战争中必不可少的一部分。当前形式多样的储能技术快速革新,在多种军事领域中得到广泛应用的同时,不断引领军事装备升级,甚至改变战场格局。本文针对陆战、海战、空战、太空战、网络战、打击以及后勤保障等军事领域,主要以储电、储热及储氢等储能技术为研究对象,广泛调研外军在储能技术方面的计划部署以及具体应用案例,展望军事储能技术未来发展趋势,并为我国军事储能发展提出建议。
中图分类号:
王旭东, 尹钊, 刘畅, 张华良, 徐玉杰, 陈海生, 周学志. 储能技术在军事领域中的应用与展望[J]. 储能科学与技术, 2020, 9(S1): 52-61.
Xudong WANG, Zhao YIN, Chang LIU, Hualiang ZHANG, Yujie XU, Haisheng CHEN, Xuezhi ZHOU. Application and prospect of energy storage technology in military field[J]. Energy Storage Science and Technology, 2020, 9(S1): 52-61.
1 | 贾喜花. 美国陆军动力与能源战略规划[J]. 国外坦克, 2013(8): 23-25. |
JIA Xihua. US Army power and energy strategic planning[J]. Foreign Tank, 2013(8): 23-25. | |
2 | 美海军开展“能量库”研究计划开发先进储能方案、能量管理系统用于武器装备[EB/OL]. 2019-03-13. http://chuneng.bjx.com.cn/news/20190313/968519.shtml. |
3 | 李建林, 靳文涛, 惠东, 等. 大规模储能在可再生能源发电中典型应用及技术走向[J]. 电器与能效管理技术, 2016(14): 9-14. |
LI Jianlin, JIN Wentao, HUI Dong, et al. The typical application and technology trend of large-scale energy storage in renewable energy generation[J]. Low Voltage Apparatus, 2016(14): 9-14. | |
4 | 姜召, 徐杰, 方涛. 新型有机液体储氢技术现状与展望[J]. 化工进展, 2012, 31: 315-322. |
JIANG Zhao, XU Jie, FANG Tao. Current situation and prospect for hydrogen storage technology with new organic liquid[J]. Chemical Industry and Engineering Progress, 2012, 31: 315-322. | |
5 | 丁玉龙, 来小康, 陈海生, 等. 储能技术及应用[M]. 北京: 化学工业出版社, 2018. |
DING Yulong, LAI Xiaokang, CHEN Haisheng, et al. Energy storage technology and application[M]. Beijing: Chemical Industry Press, 2018. | |
6 | Ultra Light Vehicle Project[EB/OL]. 2017-09-03. https://www.army-technology.com/projects/ultra-light-vehicle-ulv-project/. |
7 | 解来卿, 石秉良, 杨洲. 美军"未来战术卡车系统"通用车辆演示样车揭秘[J]. 汽车运用, 2008(7): 16. |
XIE Liaqing, SHI Bingliang, YANG Zhou. US military "future tactical truck system" general vehicle demo prototype[J]. Auto Application, 2008(7): 16. | |
8 | 张敏. 重型高机动性通用战术车辆的发展及技术分析[J]. 重型汽车, 2018, 165(3): 18-20. |
ZHANG Min. Development and technical analysis of heavy and high mobility general tactical vehicles[J]. Heavy Truck, 2018, 165(3): 18-20. | |
9 | Chevrolet Colorado ZH2 Concept[EB/OL]. 2016-01-01. https://www.netcarshow.com/chevrolet/2016-colorado_zh2_concept/. |
10 | 超级电容器释放"超级能量"[EB/OL]. 2019-11-29. http://www.81.cn/jfjbmap/content/2019-11/29/content_248728.Htm. |
11 | 晨星. 韩陆军研制超级盔甲将士兵打造成"钢铁侠"[J]. 轻兵器, 2014(2): 37. |
CHEN Xing. The Korean Army developed super armor to transform soldiers into "Iron Man"[J]. Small Arms, 2014(2): 37. | |
12 | 安平, 王剑. 锂离子电池在国防军事领域的应用[J]. 新材料产业, 2006(9): 34-40. |
AN Ping, WANG Jian. The application of lithium ion batteries in the field of national defense and military affairs[J]. Advanced Material Industry, 2006(9): 34-40. | |
13 | 明海, 邱景义, 祝夏雨, 等. 军用便携式燃料电池技术发展[J]. 电池, 2017, 47(6): 48-51. |
MING Hai, QIU Jingyi, ZHU Xiayu, et al. Development of military portable fuel cell technologies[J]. Battery Bimonthly, 2017, 47(6): 48-51. | |
14 | 程子阳, 任国全, 李冬伟. 地面无人作战平台对陆作战影响研究[J]. 飞航导弹, 2017, 12: 31-35. |
CHENG Ziyang, REN Guoquan, LI Dongwei. Research on the influence of ground unmanned combat platform on army[J]. Aerodynamic Missile Journal, 2017, 12: 31-35. | |
15 | 英国陆军大力研发电动坦克: 能吸引更多新兵入伍[EB/OL]. http://www.cankaoxiaoxi.com/mil/20191104/2394597.shtml. |
16 | 薛洪熙, 杨波, 陈海清. 燃料电池及其在舰艇上的应用[J]. 兵工自动化, 2005(6): 38-40. |
XUE Hongxi, YANG Bo, CHEN Haiqing. The technology of fuel cell and its application on naval vessels[J]. Ordnance Industry Automation, 2005(6): 38-40. | |
17 | 走进锂电潜艇的前世今生[EB/OL]. 2018-10-17. http://www.xinhuanet.com/mil/2018-10/17/c_129973130.Htm. |
18 | 张林根, 张义农. 潜艇燃料电池-核动力联合动力装置研究[J]. 舰船科学技术, 2014, 36(7): 154-157. |
ZHANG Lingen, ZHANG Yinong. Research on submarine combined fuel cell and nuclear power plant[J]. Ship Science and Technology, 2014, 36(7): 154-157. | |
19 | 黄振军, 武晓云, 林志民. 燃料电池AIP潜艇用氢源技术的发展现状及分析[J]. 电源技术, 2017, 41(11): 158-160. |
HUANG Zhenjun, WU Xiaoyun, LIN Zhimin. Review of hydrogen technology status and its development trend for fuel cell AIP system in submarine[J]. Chinese Journal of Power Sources, 2017, 41(11): 158-160. | |
20 | 李大鹏, 张晓东. 俄罗斯非核动力潜艇推进系统的选择与发展趋势[J]. 中国舰船研究, 2011, 6(6): 102-108. |
LI Dapeng, ZHANG Xiaodong. Solutions and development trends of Russian navy's non-nuclear submarine propulsion system[J]. Chinese Journal of Ship Research, 2011, 6(6): 102-108. | |
21 | 青能所突破全海深电源技术瓶颈并成功应用[EB/OL]. 2017-03-30. http://qingdao.dzwww.com/xinwen/qingdaonews/201703/t20170330_15700983.htm. |
22 | 李梅武, 崔英, 薛飞. 航母飞机起飞的最佳选择——电磁弹射系统[J]. 舰船科学技术, 2008, 30(2): 34-37. |
LI Meiwu, CUI Ying, XUE Fei. Electromagnetic ejection system——The best choice for carrier aircraft taking-off[J]. Ship Science and Technology, 2008, 30(2): 34-37. | |
23 | 张明元, 马伟明, 汪光森, 等. 飞机电磁弹射系统发展综述[J]. 舰船科学技术, 2013, 35(10): 1-5. |
ZHANG Mingyuan, MA Weiming, WANG Guangsen, et al. Overview on a significant technology of modern aircraft carrier-electromagnetic aircraft launch system[J]. Ship Science and Technology, 2013, 35(10): 1-5. | |
24 | 蔡年生. UUV动力电池现状及发展趋势[J]. 鱼雷技术, 2010, 18(2): 81-87. |
CAI Niansheng. Review of power battery for UUV with development trends[J]. Torpedo Technology, 2010, 18(2): 81-87. | |
25 | 王元元. 电动飞机近期发展动向[EB/OL]. 中国航空报. 2019-11-26. http://ep.cannews.com.cn/publish/zghkb7/html/1848/node_074635.Html. |
26 | 黄俊, 杨凤田, 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
HUANG Jun, YANG Fengtian. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica ET Astronautica Sinica, 2016, 37(1): 57-68. | |
27 | 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 46-62. |
KONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica ET Astronautica Sinica, 2018, 39(1): 46-62. | |
28 | 魏娟. 民用飞机蓄电池选型浅析[J]. 科技视界, 2015(25): 98-99. |
WEI Juan. Analysis for battery category selection of civil aircraft[J]. Science & Technology Vision, 2015(25): 98-99. | |
29 | 王家捷, 王永红, 穆举国, 等. 航空镉镍蓄电池的应用前景[J]. 电池工业, 2002, 7(5): 266-267. |
WANG Jiajie, WANG Yonghong, MU Juguo, et al. Application prospect of aircraft Cd-Ni battery[J]. Chinese Battery Industry, 2002, 7(5): 266-267. | |
30 | 方谋, 赵骁, 陈敬波, 等. 从波音787电池事故分析大型动力电池组的安全性[J]. 储能科学与技术, 2014, 3(1): 42-46. |
FANG Mou, ZHAO Xiao, CHEN Jingbo, et al. A case study of Japan airlines B-787 battery fire[J]. Energy Storage Science and Technology, 2014, 3(1): 42-46. | |
31 | 陶于金. 临近空间超长航时太阳能无人机发展及关键技术[J]. 航空制造技术, 2016, 59(18): 26-30. |
TAO Yujin. Development and key technology on near space long voyage solar unmanned aerial vehicle[J]. Aeronautical Manufacturing Technology, 2016, 59(18): 26-30. | |
32 | 孙志宏. 无人机弹射起飞技术分析[J]. 测绘与空间地理信息, 2014(8): 174-175. |
SUN Zhihong. The technical analysis of unmanned aircraft catapult launch[J]. Geomatics & Spatial Information Technology, 2014(8): 174-175. | |
33 | 唐林江, 张宝林, 陈滔, 等. 应用于空间燃料电池的氢技术研究进展[J]. 空间电子技术, 2018, 15(3): 87-94. |
TANG Linjiang, ZHANG Baolin, CHEN Tao, et al. Research progress of hydrogen technology applied to space fuel cell[J]. Space Electronic Technology, 2018, 15(3): 87-94. | |
34 | RocketlabSTP-27RD mission[EB/OL]. 2019-05-05. https://www.rocketlabusa.com/missions/completed-missions/stp-27rd/. |
35 | 黄大庆, 韩伟, 徐诚. 美国军用通信网络[J]. 遥测遥控, 2016, 37(6): 18-27. |
HUANG Daqing, HAN Wei, XU Cheng. Military communication network in America[J]. Journal of Telemetry, Tracking and Command, 2016, 37(6): 18-27. | |
36 | 美海军将联合普渡大学开发网络安全储能系统[EB/OL]. 2017-08-18. http://www.dsti.net/Information/News/106264. |
37 | 刘静琨, 张宁, 康重庆. 电力系统云储能研究框架与基础模型[J]. 中国电机工程学报, 2017, 37(12): 3361-3371. |
LIU Jingkun, ZHANG Ning, KANG Chongqing. Research framework and basic models for cloud energy storage in power system[J]. Proceedings of the CSEE, 2017, 37(12): 3361-3371. | |
38 | 高新龙, 王宇轩, 李学海. 从装备需求看鱼雷动力电池发展[J]. 鱼雷技术, 2016, 24(3): 206-210. |
GAO Xinlong, WANG Yuxuan, LI Xuehai. Development trend of power battery for torpedo based on equipment demand[J]. Torpedo Technology, 2016, 24(3): 206-210. | |
39 | 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4): 1052-1064. |
LI Jun, YAN Ping, YUAN Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, , 2014, 40(4): 1052-1064. | |
40 | 程立, 童忠诚, 柳旺季. 国外激光武器的发展现状与趋势[J] . 舰船电子对抗, 2019, 42(2): 56-58. |
CHENG Li, TONG Zhongcheng, LIU Wangji. Present status and tendency of foreign laser weapon[J]. Shipboard Electronic Countermeasure, 2019, 42(2): 56-58. | |
41 | 伊炜伟, 屈长虹, 任国光. 战术机载激光武器[J]. 激光与红外, 2018, 48(2): 131-139. |
YI Weiwei, QU Changhong, REN Guoguang. Tactical airborne laser weapon[J]. Laser & Infrared, 2018, 48(2): 131-139. | |
42 | UK and US test energy storage system for advanced Royal Navyships[EB/OL]. 2019-05-02. https://www.naval-technology.com/news/uk-and-us-test-energy-storage-system-for-advanced-royal-navy-ships/. |
43 | Ameresco公司为美国海军新兵训练基地部署8MW·h电池储能系统[EB/OL]. 2019-06-24. http://www.escn.com.cn/news/show-744334.html. |
44 | 美军升级“能源弹性基础设施计划”, 部署4MW/8MW·h电池储能系统[EB/OL]. 2018-10-27. http://www.escn.com.cn/news/show-683947.html. |
45 | 8.5 MW·h电池储能系统为美国军事基地设施供电[EB/OL]. 2018-08-28. https://news.solarbe.com/201808/28/295148.html. |
46 | 杨敏, 张正豪, 裴向前, 等. 美国陆军电力与能源战略[J]. 电力与能源, 2015, 36(2): 135-141. |
YANG Min, ZHANG Zhenghao, PEI Xiangqian, et al. Power and energy strategy of U.S. Army[J]. Power & Energy, 2015, 36(2): 135-141. | |
47 | 丁明, 林根德, 陈自年, 等. 一种适用于混合储能系统的控制策略[J]. 中国电机工程学报, 2012, 32(7): 1-6. |
DING Ming, LIN Gende, CHEN Zinian, et al. A control strategy for hybrid energy storage systems[J]. Proceedings of the CSEE, 2012, 32(7): 1-6. | |
48 | 王成山, 于波, 肖峻, 等. 平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报, 2012, 32(16): 1-8. |
WANG Chengshan, YU Bo, XIAO Jun, et al. Sizing of energy storage systems for output smoothing of renewable energy systems[J]. Proceedings of the CSEE, 2012, 32(16): 1-8. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置[J]. 储能科学与技术, 2022, 11(7): 2241-2249. |
[3] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[4] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[5] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[8] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[9] | 韩健民, 薛飞宇, 梁双印, 乔天舒. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
[10] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[11] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[12] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[13] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[14] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[15] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||