储能科学与技术 ›› 2020, Vol. 9 ›› Issue (S1): 78-94.doi: 10.19799/j.cnki.2095-4239.2020.0317
• 储能测试与评价 • 上一篇
张恒瑞1(), 沈越1(), 于尧1, 黄云辉1, 陈立桅2
收稿日期:
2020-09-14
修回日期:
2020-10-30
出版日期:
2020-12-05
发布日期:
2020-12-02
通讯作者:
沈越
E-mail:zhang_hengrui@sjtu.edu.cn;shenyue1213@hust.edu.cn
作者简介:
张恒瑞(1999—),男,硕士研究生,主要研究方向为电化学储能材料与器件,E-mail:基金资助:
Hengrui ZHANG1(), Yue SHEN1(), Yao YU1, Yunhui HUANG1, Liwei CHEN2
Received:
2020-09-14
Revised:
2020-10-30
Online:
2020-12-05
Published:
2020-12-02
Contact:
Yue SHEN
E-mail:zhang_hengrui@sjtu.edu.cn;shenyue1213@hust.edu.cn
摘要:
本文首先对固态核磁共振的基本原理进行了介绍,重点介绍了魔角旋转和交叉极化这两种可以减弱甚至消除核自旋体系中的部分相互作用以提高核磁共振谱图分辨率的方法。在此基础上,进一步总结了几种获取离子动力学信息的固态核磁共振技术,包括脉冲梯度场核磁共振、中心跃迁线宽分析、弛豫时间分析、二维交换核磁共振和自旋阵列回波核磁共振等。进一步地,本文针对不同研究对象,对这几种技术的适用范围进行了相应的介绍,并列举了一系列典型案例,比如固态核磁在锂离子电池负极材料、正极材料、LISICON型、Thio-LISICON型、NASICON型,石榴石型以及固态复合电解质材料中的离子扩散动力学分析,并比较了不同技术之间的优缺点。论文的最后部分对固态核磁共振技术在电池材料离子扩散机理研究中的应用进行了总结,并对其未来的发展作出了展望。
中图分类号:
张恒瑞, 沈越, 于尧, 黄云辉, 陈立桅. 固态核磁共振在电池材料离子扩散机理研究中的应用进展[J]. 储能科学与技术, 2020, 9(S1): 78-94.
Hengrui ZHANG, Yue SHEN, Yao YU, Yunhui HUANG, Liwei CHEN. Advances in the application of solid-state nuclear magnetic resonance for the study of ion diffusion mechanism in battery materials[J]. Energy Storage Science and Technology, 2020, 9(S1): 78-94.
1 | ZHONG G, LIU Z, WANG D, et al. Recent progress in solid-state NMR study of electrode/electrolyte materials for lithium/sodium ionbatteries[J]. J. Electrochem. 2016, 22(3): 231-243. |
2 | WU X, XU G, ZHONG G, et al. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22227-22237. |
3 | PECHER O, CARRETERO-GONZÁLEZ J, GRIFFITH K J, et al. Materials' methods: NMR in battery research[J]. Chemistry of Materials, 2016, 29(1): 213-242. |
4 | SHADIKE Z, ZHAO E, ZHOU Y N, et al. Advanced characterization techniques for sodium-ion battery studies[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702588. |
5 | KIM J S, LEE K W, KIM H S, et al. Structural defects in LiCO2 studied by 7Li nuclear magnetic relaxation[J]. Appl. Phys. Lett., 2010, doi: 10.1063/1.3310012. |
6 | JIN Y, KNEUSELS N J H, MAGUSIN P C M M, et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroe thylene carbonate[J]. Journal of the American Chemical Society, 2017, 139(42): 14992-15004. |
7 | VINOD C C, PRISTAT S, WITT E, et al. Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+xAlxTi2-x(PO4)3(0.0≤x≤1.0)[J]. The Journal of Physical Chemistry C, 2016, 120(16): 8436-8442. |
8 | XIANG Yuxuan, ZHENG Guorui, YANG Yong, et al. Toward understanding of ion dynamics in highly conductive lithium ion conductors: Some perspectives by solid state NMR techniques[J]. Solid State Ionics, 2018, 318: 19-26. |
9 | KUHN Alexander, SREERAJ Puravankara, PÖTTGEN Rainer, et al. Li ion diffusion in the anode material Li12Si7: Ultrafast quasi-1D diffusion and two distinct fast 3D jump processes separately revealed by 7Li NMR relaxometry[J]. J. Am. Chem. Soc., 2011, 133: 11018-11021. |
10 | MÄRKER K, REEVES P J, XU C, et al. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2(NMC811) cathodes during electrochemical cycling[J]. Chem. Mater., 2019, 31: 2545-2554. |
11 | WANG Dawei, ZHONG Guiming, LI Yixiao, et al. Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate[J]. Solid State Ionics 2015, 283: 109-114. |
12 | SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8 (7): 692-697. |
13 | HWANG S, CHANG W, KIM S M, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge[J]. Chemistry of Materials 2014, 26(2):1084-1092. |
14 | SEYMOUR I D, MIDDLEMISS D S, HALAT D M, et al. Characterizing oxygen local environments in paramagnetic battery materials via 17O NMR and DFT calculations[J]. Journal of the American Chemical Society, 2016, 138(30): 9405-9408. |
15 | ZHENG S, HONG C, GUAN X, et al, Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process[J]. Journal of Power Sources, 2019, 412: 336-343. |
16 | PENG C, NING G, SU J, et al. Reversible multi-electron redox chemistry of p-conjugated N-containing heteroaromatic molecule based organic cathodes[J]. Nature Energy, 2017, 2(7): doi: 10.1038/nenergy.2017.74. |
17 | HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102. |
18 | CABALLERO A, HERNÁN L, MORALES J, et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells[J]. Journal of Materials Chemistry, 2002, 12(4): 1142-1147. |
19 | LIANG Xinmiao, WANG Liyang, JIANG Yangming, et al. In-channel and in-plane Li ion diffusions in the superionic conductor Li10GeP2S12 probed by solid-state NMR[J]. Chem. Mater., 2015, 27: 5503-5510. |
20 | CLEMENT R J, BILLAUD J, ROBERT A A, et al. Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies[J]. Energy & Environmental Science, 2016, 9(10): 3240-3251. |
21 | Chandran V C, PRISTAT S, WITT E, et al. Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+xAlxTi2-x(PO4)3 (0.0≤x≤1.0)[J]. J. Phys. Chem. C, 2016, 120: 8436-8442. |
22 | ZHENG S, ZHONG G, MCDONALD M J, et al. Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(23): 9054-9062. |
23 | KUHN A, NARAYANAN S, SPENCER L, et al. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy[J]. Physical Review B, 2011, 83, doi: 10.1103/PhysRevB.83.094302 |
24 | ZHENG Jin, TANG Mingxue, HU Yanyan, et al. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angew. Chem. Int. Ed., 2016, 55: 12538-12542. |
25 | ZHENG Jin, HU Yanyan. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Appl. Mater. Interfaces, 2018, 10: 4113-4120. |
26 | SMILEY D L, GOWARD G R. Ex situ 23Na solid-state NMR reveals the local Na-ion distribution in carbon-coated Na2FePO4F during electrochemical cycling[J]. Chem. Mater., 2016, 28(21): 7645-7656. |
27 | BROUX T, BAMINE T, SIMONELLI L, et al. VIV disproportionation upon sodium extraction from Na3V2(PO4)2F3 observed by operando X-ray absorption spectroscopy and solid-state NMR[J]. The Journal of Physical Chemistry C, 2017, 121(8): 4103-4111. |
28 | BROUX T, BAMINE T, FAUTH F, et al. Strong impact of the oxygen content in Na3V2(PO4)2F3-yO(0≤y≤0.5) on its structural and electrochemical properties[J]. Chemistry of Materials, 2016, 28 (21): 7683-7692. |
29 | OYAMA G, PECHER O, GRIFFITH K J, et al. Sodium intercalation mechanism of 3.8 V class alluaudite sodium iron sulfate[J]. Chem. Mater., 2016, 28(15): 5321-5328. |
30 | LI Q, LIU Z, ZHENG F, et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode[J]. Angewandte Chemie, 2018, 57(37): 11918-11923. |
31 | ZHAO W, ZHONG G, MCDONALD M J, et al. Cu3(PO4)2/C composite as a high-capacity cathode material for rechargeable Na-ion batteries[J]. Nano Energy, 2016, 27: 420-429. |
32 | SHAO Y, YUE H, QIAO R, et al. Synthesis and reaction mechanism of novel fluorinated carbon fiber as a high-voltage cathode material for rechargeable Na batteries[J]. Chem. Mater., 2016, 28(4): 1026-1033. |
33 | GREY C P, DUPRÉ N. NMR studies of cathode materials for lithium-ion rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4493-4512. |
34 | SENGUTTUVAN P, ROUSSE G, SEZNEC V, et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials, 2011, 23(18): 4109-4111. |
35 | WANG L, SASAKI T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities[J]. Chem. Rev., 2014, 114(19): 9455-9486. |
36 | TSIAMTSOURI M A, ALLAN P K, PELL A J, et al. Exfoliation of layered Na-ion anode material Na2Ti3O7 for enhanced capacity and cyclability[J]. Chemistry of Materials, 2018, 30(5): 1505-1516. |
37 | KO J S, DOAN-NGUYEN V V, KIM H S, et al. Na2Ti3O7 nanoplatelets and nanosheets derived from a modified exfoliation process for use as a high-capacity sodium-ion negative electrode[J]. ACS Appl. Mater. Interfaces, 2017, 9(2): 1416-1425. |
38 | KEY B, BHATTACHARYYA R, MORCRETTE M, et al. Realtime NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26): 9239-9249. |
39 | ZHENG G, XIANG Y, XU L, et al. Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(29): doi: 10.1002/aenm.201801718. |
40 | ZHENG J, HU Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 4113-4120. |
41 | LIANG X, WANG L, JIANG Y, et al. In-channel and in-plane Li ion diffusions in the superionic conductor Li10GeP2S12 probed by solidstate NMR[J]. Chemistry of Materials, 2015, 27(16): 5503-5510. |
42 | YU C, GANAPATH S, VAN ECK E R H, et al. Accessing the bottleneck in all-solid state batteries, lithium-iontransport over the solid-electrolyte-electrode interface[J]. Nature Communications, 2017, 8(1): doi: 10.1038/s41467-017-01187-y. |
43 | CHANG H, ILOTT A J, TREASE N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. J. Am. Chem. Soc., 2015, 137(48): 15209-15216. |
44 | CHIEN P H, FENG X, TANG M, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI[J]. J. Phys. Chem. Lett., 2018, 9(8): 1990-1998. |
45 | TANG J A, DUGAR S, ZHONG G, et al. Non-destructive monitoring of charge-discharge cycles on lithium ion batteries using 7Li stray-field imaging[J]. Scientific Reports, 2013, 3: doi: 10.1038/srep02596. |
46 | FULLER C, DITZENBERGER J. Diffusion of lithium into germanium and silicon[J]. Physical Review, 1953, 91(1): doi: 10.1103/PhysRev.91.193. |
47 | WANG D, CHANG Y L, WANG Q, et al. Surface chemistryand electrical properties of germanium nanowires[J]. Journal of the American Chemical Society, 2004, 126 (37): 11602-11611. |
48 | LI D, SENG K H, SHI D, et al. A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(45): 14115-14121. |
49 | WINTER M. The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift für Physikalische Chemie International Journal of Research in Physical Chemistry and Chemical Physics, 2009, 223(10/11): 1395-1406. |
50 | VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. |
51 | AGUBRA V A, FERGUS J W. The formation and stability ofthe solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162. |
52 | XU K. Electrolytes and interphases in Li-ion batteriesand beyond[J]. Chemical Rreviews, 2014, 114(23): 11503-11618. |
53 | DELPUECH N, DUPRÉ N, MAZOUZI D, et al. Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell[J]. Electrochemistry Communications, 2013, 33: 72-75. |
54 | MICHAN A L, LESKES M, GREY C P. Voltage dependent solid electrolyte interphase formation in silicon electrodes: Monitoring the formation of organic decomposition products[J]. Chemistry of Materials, 2016, 28(1): 385-398. |
55 | CHEN S H, ZHONG G M, CAO X, et al. An approach to probe solid electrolyte interface on Si anode by 31P MAS NMR[J]. ECS Electrochemistry Letters, 2013, 2(12): A115-A117. |
56 | ZHOU L, LESKESM, ILOTT A J, et al. Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: Application to Li1.08Mn1.92O4 spinels[J]. Journal of Magnetic Resonance, 2013, 234: 44-57. |
57 | TREASE N M, ZHOU L, CHANG H J, et al. In situ NMR of lithium ion batteries: Bulk susceptibility effects and practical considerations[J]. Solid State Nuclear Magnetic Resonance, 2012, 42: 62-70. |
58 | ZHOU LN, LESKESM, LIU T, et al. Probing dynamic processes in lithium-ion batteries by in situ NMR spectroscopy: Application to Li1.08Mn1.92O4 electrodes[J]. Angewandte Chemie International Edition, 2015, 54(49): 14782-14786. |
59 | HAN J T, ZHU J L, LI Y T, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12[J]. Chemical Communications, 2012, 48(79): 9840-9842. |
60 | GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097. |
61 | WANG D W, ZHONG G M, DOLOTKO O, et al. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes[J]. Journal of Materials Chemistry A, 2014, 2(47): 20271-20279. |
62 | BOTTKE P, RETTENWANDER D, SCHMIDT W, et al. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12[J]. Chemistry of Materials, 2015, 27(19): 6571-6582. |
63 | WANG D W, ZHONG G M, LI Y X, et al. Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate[J]. Solid State Ionics, 2015, 283: 109-114. |
64 | DOGAN F, JOYCE C, VAUGHEY J T. Formation of silicon local environments upon annealing for silicon anodes: A29Si solid state NMR study[J]. Journal of the Electrochemical Society, 2013, 160(2): A312-A319. |
65 | CATTANEO A S, DUPKE S, SCHMITZ A, et al. Solid state NMR structural studies of the lithiation of nano-silicon: Effects of charging capacities, host-doping, and thermal treatment[J]. Solid State Ionics, 2013, 249: 41-48. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||