| 1 | GUERARD D, HEROLD A. Intercalation of lithium into graphite and other carbons[J]. Carbon, 1975, 13: 337-45. | 
																													
																						| 2 | DAHN J. Phase-diagram of LixC6[J]. Physical Review B, 1991, 44: 9170-9177. | 
																													
																						| 3 | 孙方静, 韦连梅, 张家玮, 等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术, 2017, 6(6): 1223-1230. | 
																													
																						|  | SUN Fangjing, WEI Lianmei, ZHANG Jiawei, et al. Research progress and evaluation methods of lithium-ion battery fast-charge graphite anode material[J]. Energy Storage Science and Technology, 2017, 6(6): 1223-1230. | 
																													
																						| 4 | NIE Mengyun, CHALASANI D, ABRAHAM D P, et al. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117: 1257-1267. | 
																													
																						| 5 | TARASCON M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. | 
																													
																						| 6 | BUQA H, GOERS M, HOLZAPFEL M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(2): A474-A481. | 
																													
																						| 7 | ZHAO Zhuo, JIA Xiaochuan, LI Jing, et al. Oxidative modification of natural graphite negative electrode[J]. New Carbon Material, 2013, 28(5): 385-390. | 
																													
																						| 8 | HAN Y J, KIM J D, YEO J S, et al. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch[J]. Carbon, 2015, 94: 432-438. | 
																													
																						| 9 | PARK M S, LEE J, LEE J W, et al. Tuning the surface chemistry of natural graphite anode by H3PO4 and H3BO3 treatments for improving electrochemical and thermal properties[J]. Carbon, 2013, 62: 278-287. | 
																													
																						| 10 | 李荣辉, 闫伟, 吴晓强, 等. 高容量高倍率的氮掺杂二次粒子石墨负极材料[J]. 储能科学与技术, 2019, 8(1): 116-122. | 
																													
																						|  | LI Ronghui, YAN Wei, WU Xiaoqiang, et al. Nitrogen doped secondary particle graphite anode for high capacity and high rate Li ion battery[J]. | 
																													
																						|  | Energy Storage Science and Technology, 2019, 8(1): 116-122. | 
																													
																						| 11 | DU Zhijia, ZHANG Shichao, ZHAO F, et al. Improved electrochemical performance of Sn-Ni nanorods array for Li-ion battery[J]. International Journal of Electrochemical Science, 2012, 7: 1180-1186. | 
																													
																						| 12 | TAN Chunhui, QI Gongwei, LI Yeping, et al. The improved performance of porous Sn-Ni alloy as anode materials for lithium-ion battery prepared by electrochemical dissolution treatment[J]. International Journal of Electrochemical Science, 2013, 8: 1966-1975. | 
																													
																						| 13 | WU Chao, MAIER J, YU Yan. Sn-based nanoparticles encapsulated in a porous 3D graphene network: Advanced anodes for high-rate and long life Li-ion batteries[J]. Advanced Functional Materials, 2015, 25: 3488-3496. | 
																													
																						| 14 | TIRADO J. Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the-art and future prospects[J]. Materials Science & Engineering Reports, 2003, 40: 103-136. | 
																													
																						| 15 | 徐辉, 仰榴青, 尹凡, 等. 无定形碳包覆锡基负极材料的制备及其电化学性能[J]. 储能科学与技术, 2019, 8(4): 732-737. | 
																													
																						|  | XU Hui, YANG Liuqing, YIN Fan, et al. Preparation and electrochemical | 
																													
																						|  | performance of amorphous carbon coated tin-based anode materials[J]. Energy Storage Science and Technology, 2019, 8(4): 732-737. | 
																													
																						| 16 | CUI Lifeng,SHENJian,CHENG Fangyi,et al.SnO2 nanoparticles@ | 
																													
																						|  | polypyrrole nanowires composite as anode materials for rechargeable | 
																													
																						|  | lithium-ion batteries[J]. Journal of Power Sources, 2011, 196: 2195-2201. | 
																													
																						| 17 | CHEN Chunhao, CHASON E, GUDURU P. Numerical solution of moving phase boundary and diffusion-induced stress of Sn anode in the lithium-ion battery[J]. Journal of the Electrochemical Society, 2017, 164: E3661-E3670. | 
																													
																						| 18 | LIU Lilai, AN Maozhong, YANG Peixia, et al. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries[J]. Scientific Reports, 2015, 5: doi: 10.1038/srep09055. | 
																													
																						| 19 | JI Liwen, TAN Zhongkui, KUYKENDALL T, et al. Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage[J]. Energy & Environmental Science, 2011, 4: 3611-3616. | 
																													
																						| 20 | XU Yunhua, LIU Qing, ZHU Yujie, et al. Uniform nano-Sn/C composite anodes for lithium ion batteries[J]. Nano Letters, 2013, 13: 470-474. | 
																													
																						| 21 | ELLIS B, LEE K T, NAZAR L. Positive electrode materials for Li-ion and Li-batteries[J]. Chemistry of Materials, 2010, 22: 691-714. |