储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 137-142.doi: 10.19799/j.cnki.2095-4239.2020.0315

• 储能材料与器件 • 上一篇    下一篇

石墨/纳米锡复合负极材料

金周1(), 俞海龙1, 赵文武1, 赵光金2, 黄学杰1()   

  1. 1.中国科学院物理研究所,北京 100191
    2.国网河南省电力公司电力科学研究院,河南 郑州 450052
  • 收稿日期:2020-09-10 修回日期:2020-09-28 出版日期:2021-01-05 发布日期:2021-01-08
  • 作者简介:金周(1991—),男,博士研究生,研究方向为锂离子电池负极材料,E-mail:jinzhou15@mails.ucas.ac.cn|黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@iphy.ac.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB0104100);国家电网有限公司科技项目(521702180003)

Graphite/nano-Sn composite anode materials for lithium-ion batteries

Zhou JIN1(), Hailong YU1, Wenwu ZHAO1, Guangjin ZHAO2, Xuejie HUANG1()   

  1. 1.Institute of Physics Chinese Academy of Sciences, Beijing 100191, China
    2.Electric Power Science Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450052, Henan, China
  • Received:2020-09-10 Revised:2020-09-28 Online:2021-01-05 Published:2021-01-08

摘要:

随着电动汽车的高速发展,近年来动力电池逐步向具有高比能量型快充动力电池发展,传统石墨负极材料已逐渐难以满足电池快充需求。近年来金属锡负极因其高比容和优异的倍率特性受到广泛关注,但受制于自身的体积效应和界面稳定性问题,限制其电池循环寿命。本文首次提出一种基于石墨和锡的复合材料制备方法,以氯化亚锡和石墨为原料,通过液相法和高温烧结制备石墨/纳米锡复合材料。其中石墨作为纳米锡颗粒的载体有效地抑制锡颗粒充放电中发生团聚和粉化。复合材料在显著提高倍率性能前提下保持了循环寿命优势,实现其在90 mA/g的电流密度下循环150周,比容量保持在360 mA·h/g以上;在900 mA/g的电流密度下循环的可逆比容量大于180 mA·h/g,相同电流密度下石墨比容量小于20 mA·h/g。

关键词: 锂离子电池, 负极材料, 纳米锡, 石墨, 石墨/纳米锡符合负极

Abstract:

With the rapid development of electric vehicles, the requirements for power batteries now includes fast-charging and high energy densities. The traditional graphite anode material cannot meet these needs, especially for fast-charging applications. A negative electrode made of tin has a high specific capacity and fast rate performance, but its battery cycle life is limited due to volume expansion/shrinkage and interface stability problems during cycling. In this article, the synthesis of a graphite/nano-Sn composite material is presented, using chemical deposition and high-temperature sintering using SnCl2 and natural graphite as precursors. With surface deposition of nano-sized Sn particles, the graphite prevents aggregation and pulverization of the tin particles during charging and discharging. The graphite/nano-Sn composite anode material significantly improves the rate performance and maintains excellent cycle stability. The anode material demonstrates a stable capacity of 360 mA·h/g after 150 cycles at a current density of 90 mA/g, and a stable capacity of 180 mA·h/g at a current density of 900 mA/g. In contrast, the traditional graphite anode material is only capable of capacities less than 20 mA·h/g at the same current densities.

Key words: Li-ion battery, anode material, nano tin, graphite, graphite-tin composite material

中图分类号: