储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 261-270.doi: 10.19799/j.cnki.2095-4239.2020.0314

• 储能测试与评价 • 上一篇    下一篇

基于特征处理与径向基神经网络的锂电池剩余容量估算方法

陈峥1(), 李磊磊1, 舒星1, 沈世全1, 刘永刚2, 申江卫1()   

  1. 1.昆明理工大学交通工程学院,云南 昆明 650500
    2.重庆大学汽车工程学院,重庆 400044
  • 收稿日期:2020-09-10 修回日期:2020-10-08 出版日期:2021-01-05 发布日期:2021-01-08
  • 作者简介:陈峥(1982—),男,博士,教授,研究方向为动力电池状态估计,E-mail:chen@kust.edu.cn|申江卫,高级实验师,研究方向为动力电池状态估计,E-mail:shenjiangwei6@163.com
  • 基金资助:
    国家自然科学基金项目(61763021);国家重点研发计划项目(2018YFB0104000)

Efficient remaining capacity estimation method for LIB based on feature processing and the RBF neural network

Zheng CHEN1(), Leilei LI1, Xing SHU1, Shiquan SHEN1, Yonggang LIU2, Jiangwei SHEN1()   

  1. 1.Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2.School of Automotive Engineering, Chongqing University, Chongqing 400044, China
  • Received:2020-09-10 Revised:2020-10-08 Online:2021-01-05 Published:2021-01-08

摘要:

为解决锂电池可用容量估算过程中精度与效率难以兼顾的问题,本文提出了一种基于特征处理与径向基神经网络的锂电池剩余容量估计方法。首先由电池充电过程数据中提取与剩余可用容量相关联的特征量,然后运用局部异常因子算法对特征量中异常点进行精准清洗,提高特征量所含有效信息量,再通过局部线性嵌入降维算法对所得特征向量组进行降维处理,减少数据复杂度,最后,引入径向基神经网络建立起剩余容量的估算模型。在不同型号电池上应用该模型进行了验证,估算结果的最大平均绝对误差为0.06,最大均方根误差为0.05,表明该模型能够有效估计锂电池的剩余可用容量并有较强的鲁棒性。与Elman神经网络和BP神经网络算法相比,在保证高精度的同时该方法有更快的估算效率。

关键词: 锂离子电池, 特征处理, 径向基神经网络, 容量估计

Abstract:

To solve the problem of the difficulty in balancing the accuracy and efficiency in the process of capacity estimation for an LIB, this paper proposes a remaining capacity estimation method for an LIB based on feature engineering and a radial basis neural network. First, the features associated with the remaining available capacity from the data during battery charging is extracted; then, the local anomaly factor algorithm is used to clean the abnormal points accurately in the features that increase the amount of effective information contained in the feature quantity; next, the dimensionality reduction process of the feature vector group is performed by the local linear embedding dimensionality reduction algorithm to reduce the computation complexity; and finally, a radial basis function neural network is introduced to establish an estimation model for the remaining capacity. The model is verified on different batteries; the results show that the model has strong robustness, the maximum average absolute error does not exceed 0.06, the maximum root mean square error is 0.05, and, when compared with the Elman neural network and the BP neural network algorithm, it has faster estimation efficiency while ensuring high accuracy.

Key words: lithium-ion battery, feature processing, RBF neural network, capacity estimation

中图分类号: