1 |
TAGADE P, HARIHARAN K S, RAMACHANDRAN S, et al. Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227281.
|
2 |
WANG X, WEI X, DAI H. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge[J]. Journal of Energy Storage, 2019, 21: 618-631.
|
3 |
WASSILIADIS N, ADERMANN J, FRERICKS A, et al. Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: A use-case life cycle analysis[J]. Journal of Energy Storage, 2018: 73-87.
|
4 |
XUE Z, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression[J]. Neurocomputing, 2019: 95-102.
|
5 |
韦海燕, 安晶晶, 陈静, 等. 基于改进粒子滤波算法实现锂离子电池RUL预测[J]. 汽车工程, 2019, 41(12): 1377-1383.
|
|
WEI Haiyan, AN Jingjing, CHEN Jing, et al. Prediction of lithium-ion battery based on improved particle filtering algorithm[J]. Automotive Engineering, 2019, 41(12): 1377-1383.
|
6 |
郑涛, 张里, 侯杨成, 等. 基于自适应CKF的老化锂电池SOC估计[J]. 储能科学与技术, 2020, 9(4): 1193-1199.
|
|
ZHENG Tao, ZHANG Li, HOU Yangcheng, et al. SOC estimation of aging lithium battery based on adaptive CKF[J]. Energy Storage Science and Technology, 2020, 9(4): 1193-1199.
|
7 |
GUO P, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450.
|
8 |
WANG J S, LIU P, HICKSGARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011, 196(8): 3942-3949.
|
9 |
ZHANG Y, XIONG R, HE H, et al. State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: Capacity loss modeling and remaining useful life prediction[J]. Appl Energy, 2019, 255(1): doi: 10.1016/j.apenergy.2019.113818.
|
10 |
TANG X, LIU K, WANG X, et al. Model migration neural network for predicting battery aging trajectories[J]. IEEE Trans Transport Electrification, 2020: 363-374.
|
11 |
DAI H, ZHAO G, LIN M, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Trans Ind Electron, 2019, 66(10): 7706-7716.
|
12 |
LIU K, LI Y, HU X, et al. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries[J]. IEEE Trans Industrial Inf, 2020, 16(6): 3767-3777.
|
13 |
LIU K, SHANG Y, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Trans Ind Electron, 2020, doi: 10.1109/TIE.2020.2973876.
|
14 |
起文斌, 张华, 金周, 等. 锂电池百篇论文点评(2020.04.01—2020.05.31)[J]. 储能科学与技术, 2020, 9(4): 1015-1029.
|
|
QI Wenbin, ZHANG Hua, JIN Zhou, et al. Reviews of selected 100 recent papers for lithium batteries(Apr. 01, 2020 to May 31, 2020)[J]. Energy Storage Science and Technology, 2020, 9(4): 1015-1029.
|
15 |
LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373: 40-53.
|
16 |
WANG D, KONG J Z, ZHAO Y, et al. Piecewise model based intelligent prognostics for state of health prediction of rechargeable batteries with capacity regeneration phenomena[J]. Measurement, 2019, doi: 10.1016/j.measurement.2019.07.064.
|
17 |
BREUNIG M M, KRIEGEL H P, NG R, et al. LOF: Identifying density-based local outliers[J]. ACM Sigmod Record, 2000, 29(2): 93-104.
|
18 |
RICHARDSON R R, OSBORNE M A, HOWEY D A. Battery health prediction under generalized conditions using a Gaussian process transition model[J]. Journal of Energy Storage, 2019, 23: 320-328.
|
19 |
ZHOU Y, HUANG M, CHEN Y, et al. A novel health indicator for on-line lithiumion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321: doi: 10.1016/j.jpowsour.2016.04.119.
|
20 |
ROWEIS, SAM T, SAU L, et al. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000: 232-2326.
|
21 |
LU C, TAO L, FAN H. Li-ion battery capacity estimation: A geometrical approach[J]. Journal of Power Sources, 2014, 261(9): 141-147.
|
22 |
OLGA K, OLEG O, MATTI P. Selection of the optimal parameter value for the locally linear embedding algorithm[C]//Scandinavian Conference on Image Analysis, 2002.
|
23 |
ER M J, WU S, LU J, et al. Face recognition with radial basis function (RBF) neural networks[J]. IEEE Transactions on Neural Networks, 2002, 13(3): 697-710.
|