储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 27-39.doi: 10.19799/j.cnki.2095-4239.2020.0306
蓝兹炜(), 张建茹, 李园园, 席儒恒, 赵段, 张彩虹()
收稿日期:
2020-09-03
修回日期:
2020-09-13
出版日期:
2021-01-05
发布日期:
2021-01-08
通讯作者:
张彩虹
E-mail:momlanzw@foxmail.com;qhnu2020@163.com
作者简介:
蓝兹炜(1996—),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:基金资助:
Ziwei LAN(), Jianru ZHANG, Yuanyuan LI, Ruheng XI, Duan ZHAO, Caihong ZHANG()
Received:
2020-09-03
Revised:
2020-09-13
Online:
2021-01-05
Published:
2021-01-08
Contact:
Caihong ZHANG
E-mail:momlanzw@foxmail.com;qhnu2020@163.com
摘要:
以单一正极材料LiCoO2、LiFePO4和LiMO2(M=NixCoyMnz/Alz, x+y+z=1)等为代表的锂离子电池,因其比容量高、能量密度大和循环寿命长等优点被广泛应用于航天航空、电动汽车以及电子设备等领域中。然而,这些单一正极材料因结构极其不稳定、不可逆容量损失高、循环稳定性差、安全性低和导电性低等问题阻碍了在大型动力能源设备上的应用。对此,回顾了单一正极材料在不同领域中的应用情况并描述了其主要缺陷及诱发原因。结果发现,将单一正极材料与其他非正极材料或正极材料复合制备得到的一元/二元复合正极材料能有效解决以上问题,从而从根本上提高电化学性能及循环稳定性。据此,综述了基于锂离子电池正极材料的1+0型和1+0+0型一元复合正极材料以及1+1型和1+1+0型二元复合正极材料(其中1表示锂离子正极材料,0表示非锂离子正极材料)的研究进展,深入分析了上述两大类复合正极材料下4种类型的14种不同结构组合的复合正极材料的电化学性能。最后,阐述了其存在的主要问题,并对今后的发展方向和值得研究的应用价值进行了展望。
中图分类号:
蓝兹炜, 张建茹, 李园园, 席儒恒, 赵段, 张彩虹. 基于锂离子电池正极材料的一元/二元复合正极材料研究进展[J]. 储能科学与技术, 2021, 10(1): 27-39.
Ziwei LAN, Jianru ZHANG, Yuanyuan LI, Ruheng XI, Duan ZHAO, Caihong ZHANG. Research progress of mono/binary composite cathode materials based on lithium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2021, 10(1): 27-39.
表1
基于一元/二元复合正极材料与单一正极材料的电化学性能对比"
正极材料 | 初始放电比容量/mA·h·g-1 | 第N次放电比容量 /mA·h·g-1 | 倍率性能 /mA·h·g-1 | 容量保持率/% | 参考文献 |
---|---|---|---|---|---|
LiNi0.8Co0.15Al0.05O2 | 200.5 (0.1 C) | 168.4 (0.5 C,100次) | 125.3 (5 C) | 77.0 (5 C,100次) | [ |
LiNi0.8Co0.15Al0.05O2/石墨烯 | 206.8 (0.1 C) | 190.2 (0.5 C,100次) | 153.6 (5 C) | 82.1 (5 C,100次) | [ |
LiFePO4 | ~140 (0.1 C) | ~83 (5 C,100次) | ~95 (5 C) | 87.3 (5 C,100次) | [ |
LiFePO4/CNF | ~150 (0.1 C) | ~99 (5 C,100次) | ~98 (5 C) | 98.4 (5 C,100次) | [ |
LiNi1/3Co1/3Mn1/3O2 | 207.6 (0.2 C) | 188.8 (0.2 C,100次) | 87.4 (5 C) | 84.39 (0.2 C,100次) | [ |
LiNi1/3Co1/3Mn1/3O2/PTPAn | 223.7 (0.2 C) | 137.3 (0.2 C,100次) | 127.3 (5 C) | 66.13 (0.2 C,100次) | [ |
石墨烯/Y2O3/LiNi0.8Co0.15Al0.05O2 | 191 (0.1 C) | 180 (0.5 C,100次) | 146 (5 C) | 92 (0.5 C,100次) | [ |
LiCoO2 | 136 (0.2 C) | 135.2 (1 C,100次) | 106.8 (10 C) | 87.4 (1 C,100次) | [ |
LiCoO2/LiNi0.8Co0.15Al0.05O2 | 172.1 (0.2 C) | 149.1 (1 C,100次) | 136 (10 C) | 89.8 (1 C,100次) | [ |
Li[Li0.2Mn0.54Ni0.13Co0.13]O2 | 271.9 (0.1 C) | 207.8 (0.1 C,50次) | — | 76.4 (0.1 C,50次) | [ |
Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 | 274.0 (0.1 C) | 242.5 (0.1 C,50次) | — | 88.5 (0.1 C,50次) | [ |
Li2MnO3 | 320 (10 mA/g) | 156 (10 mA/g,50次) | 9 (400 mA/g) | 48.7 (10 mA/g,50次) | [ |
LiMn2O4 | 290 (10 mA/g) | 197 (10 mA/g,50次) | 170 (400 mA/g) | 67.9 (10 mA/g,50次) | [ |
Li2MnO3-LiMn2O4 | 388 (10 mA/g) | 196 (10 mA/g,50次) | 235 (400 mA/g) | 60.5 (10 mA/g,50次) | [ |
Li[Li0.2Mn0.54Ni0.13Co0.13]O2-LiMn1.5Ti0.5O4 | 220 (20 mA/g) | 198 (20 mA/g,40次) | 195 (400 mA/g) | 90 (20 mA/g,40次) | [ |
LiNi0.82Co0.12Mn0.06O2 | 184.9 (1 C) | 130.63 (1 C,500次) | 180.1 (5 C) | 70.65 (1 C,500次) | [ |
LiNi0.82Co0.12Mn0.06O2/LiFePO4 | 180.3 (1 C) | 165.3 (1 C,500次) | 176.3 (5 C) | 91.65 (1 C,500次) | [ |
1 | LI M, LU Jun, CHEN Zhongwei, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
2 | KANG K, MENG Y S, BREGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980. |
3 | LI Wangda, SONG Bohang, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059. |
4 | YANG Xuerui, LIN Min, ZHENG Guorui, et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy[J]. Advanced Functional Materials, 2020, 30(43): doi: 10.1002/adfm.202004664. |
5 | XIA Hui, LUO Zhentao, XIE Jianping. Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries[J]. Progress in Natural Science: Materials International, 2012, 22(6): 572-584. |
6 | MYUNG S, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. |
7 | MAKHONINA E V, MEDVEDEVA A E, DUBASOVA V S, et al. LiFePO4-LiMn2O4 composite cathode materials for lithium-ion batteries[J]. Inorganic Materials, 2015, 51(12): 1264-1269. |
8 | YANG Xinli, BAO Chenguang, XIE Lingling, et al. Preparation of LiNi1/3Co1/3Mn1/3O2/polytriphenylamine cathode composites with enhanced electrochemical performances towards reversible lithium storage[J]. Ceramics International, 2019, 45(8): 9726-9735. |
9 | 张林, 张静, 陈剑峰, 等. 锂离子电池正极材料共混改性研究进展[J]. 储能科学与技术, 2019, 8(5): 838-842. |
ZHANG Lin, ZHANG Jing, CHEN Jianfeng, et al. Research progress in blending modification cathode materials for lithium ion batteries[J]. Energy Storage Science Technology, 2019, 8(5): 838-842. | |
10 | LUO Wen, LIU Long, LI Xinxi, et al. Templated assembly of LiNi0.8Co0.15Al0.05O2/graphene nano composite with high rate capability and long-term cyclability for lithium ion battery[J]. Journal of Alloys and Compounds, 2019, 810: doi: 10.1016/j.jallcom.2019.151786. |
11 | ADEPOJU A A, WILLIAMS Q L. High C-rate performance of LiFePO4/carbon nanofibers composite cathode for Li-ion batteries[J]. Current Applied Physics, 2020, 20(1): 1-4. |
12 | LOGHAVI M M, EQRA R, MOHAMMADI-MANESH H. Preparation and characteristics of graphene/Y2O3/LiNi0.8Co0.15Al0.05O2 composite for the cathode of lithium-ion battery[J]. Journal of Electroanalytical Chemistry, 2020, 862: doi: 10.1016/j.jelechem.2020.113971. |
13 | 薛江陪, 姜春海, 邹智敏, 等. LiCoO2/LiNi0.8Co0.15Al0.05O2混合正极的颗粒级配与电化学性能[J]. 材料研究学报, 2019, 33(3): 170-176. |
XUE Jiangpei, JIANG Chunhai, ZOU Zhimin, et al. Electrochemical properties of LiCoO2/LiNi0.8Co0.15Al0.05O2 blended cathode materials with varied grain-gradations[J]. Chinese Journal of Materials Research, 2019, 33(3): 170-176. | |
14 | WU Feng, WANG Zhao, SU Yuefeng, et al. Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 20-25. |
15 | KATAOKA R, TAGUCHI N, KOJIMA T, et al. Improving the oxygen redox stability of NaCl-type cation disordered Li2MnO3 in a composite structure of Li2MnO3 and spinel-type LiMn2O4[J]. Journal of Materials Chemistry A, 2019, 7(10): 5381-5390. |
16 | WANG Sihui, WU Yan, LI Yixiao, et al. Li[Li0.2Mn0.54Ni0.13Co0.13]O2-LiMn1.5Ti0.5O4 composite cathodes with improved electrochemical performance for lithium ion batteries[J]. Electrochimica Acta, 2014, 133: 100-106. |
17 | ZHONG Zeqin, CHEN Lingzhen, ZHU Chengben, et al. Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance[J]. Journal of Power Sources, 2020, 464: doi: 10.1016/j.jpowsour.2020.228235. |
18 | CHEN Yinghao, TIAN Yulan, QIU Yunzhong, et al. Synthesis and superior cathode performance of sandwiched LiMn2O4@rGO nanocomposites for lithium-ion batteries[J]. Materials Today Advances, 2019, 1: doi:10.1016/j.mtadv.2018.12.001. |
19 | WANG G X, YANG L, CHEN Y, et al. An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2005, 50(24): 4649-4654. |
20 | LUO X D, YIN Y Z, YUAN M, et al. High performance composites of spinel LiMn2O4/3DG for lithium ion batteries[J]. RSC Advances, 2018, 8(2): 877-884. |
21 | YOON Sukeun, JUNG Kyunam, YEON Sunhwa, et al. Electrochemical properties of LiNi0.8Co0.15Al0.05O2-graphene composite as cathode materials for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2012, 683: 88-93. |
22 | RAO C V, REDDY A L M, ISHIKAWA Y, et al. LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 2966-2972. |
23 | LIU Suqin, ZHANG Jianfeng, HUANG Kelong, et al. Improvement of electrochemical performance of LiMn2O4 composite cathode by ox-MWCNT addition for Li-ion battery[J]. Journal of the Brazilian Chemical Society, 2008, 19(6): 1078-1083. |
24 | LEVIN O, ELISEEVA S, ALEKSEEVA E V, et al. Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components[J]. International Journal of Electrochemical Science, 2015, 10: 8175-8189. |
25 | HER Lijane, HONG Jinlong, CHANG Chiachin. Preparation and electrochemical characterizations of poly(3,4-dioxyethylenethiophene)/LiCoO2 composite cathode in lithium-ion battery[J]. Journal of Power Sources, 2006, 157(1): 457-463. |
26 | 苏畅, 黄启飞, 徐立环, 等. C-LiFePO4/聚三苯胺复合锂离子电池正极材料的制备与性能[J]. 物理化学学报, 2014, 30(1): 88-94. |
SU Chang, HUANG Qifei, XU Lihuan, et al. Preparation and performances on C-LiFePO4/polytriphenylamine composite as cathode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 88-94. | |
27 | ZHU Limin, XIE Lingling, BAO Chenguang, et al. LiNi1/3Co1/3Mn1/3O2/polypyrrole composites as cathode materials for high-performance lithium-ion batteries[J]. International Journal of Energy Research, 2020, 44(1): 298-308. |
28 | PUTHIRATH A B, JOHN B, GOURI C, et al. Lithium doped polyaniline and its composites with LiFePO4 and LiMn2O4-prospective cathode active materials for environment friendly and flexible Li-ion battery applications[J]. RSC Advances, 2015, 5(85): 69220-69228. |
29 | RYU Kwangsun, KIM Kwangman. A hybrid power source with a shared electrode of polyaniline doped with LiPF6[J]. Journal of Power Sources, 2007, 165(1): 420-426. |
30 | TRANQUI D, SHANNON R, CHEN H Y, et al. Crystal structure of ordered Li4SiO4[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1979, 35(11): 2479-2487. |
31 | ZHENG Junchao, YANG Zhuo, HE Zhenjiang, et al. In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries[J]. Nano Energy, 2018, 53: 613-621. |
32 | KIM Chisu, GUERFI A, HOVINGTON P, et al. Facile dry synthesis of sulfur-LiFePO4 core-shell composite for the scalable fabrication of lithium/sulfur batteries[J]. Electrochemistry Communications, 2013, 32: 35-38. |
33 | 朱蕾, 江小标, 贾荻, 等. LiFePO4/S复合正极材料的制备及其电化学性能[J]. 储能科学与技术, 2019, 8(6): 1116-1125. |
ZHU Lei, JIANG Xiaobiao, JIA Di, et al. Preparation and electrochemical performance of LiFePO4/S composite cathode materials[J]. Energy Storage Science Technology, 2019, 8(6): 1116-1125. | |
34 | CHEN Qichao, LUO Liming, WANG Long, et al. Enhanced electrochemical properties of Y2O3-coated-(lithium-manganese)-rich layered oxides as cathode materials for use in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 735: 1778-1786. |
35 | JU Bowei, WANG Xianyou, WU Chun, et al. Electrochemical performance of the graphene/Y2O3/LiMn2O4 hybrid as cathode for lithium-ion battery[J]. Journal of Alloys and Compounds, 2014, 584: 454-460. |
36 | DENG Yufeng, ZHAO Shixi, XU Yahui, et al. Electrochemical performance of layer-spinel composite cathode materials at elevated temperature and high rate[J]. Applied Surface Science, 2015, 351: 209-215. |
37 | GE Tao, GUO Zhaoxin, WU Minfang, et al. Preparation and characterization of spinel-layered mixed structural 0.2LiNi0.5Mn1.5O4·0.8Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 801: 254-261. |
38 | NAYAK P K, LEVI E, GRINBLAT J, et al. High-capacity layered-spinel cathodes for Li-ion batteries[J]. ChemSusChem, 2016, 9(17): 2404-2413. |
39 | LIU Yunjian, ZHENG Shengquan, WANG Qiliang, et al. Improvement the electrochemical performance of Cr doped layered-spinel composite cathode material Li1.1Ni0.235Mn0.735Cr0.03O2.3 with Li4Ti5O12 coating[J]. Ceramics International, 2017, 43(12): 8800-8808. |
40 | KIM Hyunsoo, KIM Sunil, KIM Wooseong. A study on electrochemical characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode for Li secondary battery[J]. Electrochimica Acta, 2006, 52(4): 1457-1461. |
41 | CARELLI S, QUARTI M, YAGCI M C, et al. Modeling and experimental validation of a high-power lithium-ion pouch cell with LCO/NCA blend cathode[J]. Journal of the Electrochemical Society, 2019, 166(13): A2990-A3003. |
42 | POTIRON E, VERBAERE A, PIFFARD Y, et al. Electrochemically synthesized vanadium oxides as lithium insertion hosts[J]. Electrochimica Acta, 1999, 45(1): 197-214. |
43 | WEST K, ZACHAUCHRISTIANSEN B, JACOBSEN T, et al. Vanadium oxide xerogels as electrodes for lithium batteries[J]. Electrochimica Acta, 1993, 38(9): 1215-1220. |
44 | GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(1): 84-86. |
45 | LEE E S, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-VO2(B) composite cathodes with controlled irreversible capacity loss for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(1): doi: 10.1149/1.3515900. |
46 | GAO J, MANTHIRAM A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts[J]. Journal of Power Sources, 2009, 191(2): 644-647. |
47 | ZHU Zhenye, ZHUO Sang. Nano layered-spinel 0.8Li2MnO3·0.2LiMn2O4 as high-performance cathode for Li-ion batteries[J]. IOP Conference Series: Materials Science and Engineering, 2020, 733: doi: 10.1088/1757-899X/733/1/012005 |
48 | LEE E S, HUQ A, MANTHIRAM A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 193-203. |
49 | LEE E S, HUQ A, CHANG H Y, et al. High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(3): 600-612. |
50 | KATAOKA R, KOJIMA T, TAKEICHI N. Electrochemical property of Li-Mn cation disordered Li-rich Li2MnO3 with nacl type structure[J]. Journal of the Electrochemical Society, 2018, 165(2): doi: 10.1149/2.1041802jes. |
51 | HU Sijiang, PILLAI A S, LIANG Gemeng et al. Li-rich layered oxides and their practical challenges: Recent progress and perspectives[J]. Electrochemical Energy Reviews, 2019: 1-35. |
52 | YAN Pengfei, XIAO Liang, ZHENG Jianming, et al. Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries[J]. Chemistry of Materials, 2015, 27(3): 975-982. |
53 | TIAN Mijie, ZHOU Lin, WU Huali, et al. Phase structure and electrochemical performance of layered-spinel integrated LiNi0.5Mn0.5O2-LiMn1.9Al0.1O4 composite cathodes for lithium ion batteries[J]. Ceramics International, 2016, 42(15): 16916-16926. |
54 | 朱蕾, 贾荻, 俞超, 等. 锂离子电池LiFePO4/LiNi0.8Co0.15Al0.05O2混合正极材料的电化学热稳定性能[J]. 储能科学与技术, 2016, 5(4): 478-485. |
ZHU Lei, JIA Di, YU Chao, et al. Electrochemical thermal stability of the LiFePO4/LiNi0.8Co0.15Al0.05O2 blend cathode material for lithium ion batteries[J]. Energy Storage Science Technology, 2016, 5(4): 478-485. | |
55 | ZHU Lei, YAN Tingfang, JIA Di, et al. LiFePO4-coated LiNi0.5Co0.2Mn0.3O2 cathode materials with improved high voltage electrochemical performance and enhanced safety for lithium ion pouch cells[J]. Journal of the Electrochemical Society, 2019, 166(3): doi: https://doi.org/10.1149/2.0651903jes. |
56 | LIU Lina, YAN Xiao, WANG Yuhui, et al. Studies of the electrochemical properties and thermal stability of LiNi1/3Co1/3Mn1/3O2/LiFePO4 composite cathodes for lithium ion batteries[J]. Ionics, 2014, 20(8): 1087-1093. |
57 | KIM Hyunju, JIN Bongsoo, DOH Chilhoon, et al. Electrochemical properties and thermal stability of LiNi0.8Co0.15Al0.05O2-LiFePO4 mixed cathode materials for lithium secondary[J]. Journal of Electrochemical Science and Technology, 2012, 3(2): 63-67. |
58 | CHEN Junchao, ZHU Lei, JIA Di, et al. LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating[J]. Electrochimica Acta, 2019, 312: 179-187. |
59 | ALLAHYARI E, GHORBANZADEH M, RIAHIFAR R, et al. Electrochemical performance of NCM/LFP/Al composite cathode materials for lithium-ion batteries[J]. Materials Research Express, 2018, 5(5): doi: 10.1088/2053-1591/aacoc7. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[12] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||