1 |
周芳, 刘思, 侯敏. 锂电池技术在储能领域的应用与发展趋势[J]. 电源技术, 2019, 43(2): 348-350.
|
|
ZHOU Fang, LIU Si, HOU Min. Application and development trend of lithium battery technology in the field of energy storage[J]. Chinese Journal of Power Sources, 2019, 43(2): 348-350.
|
2 |
HUNTER P M, ANBUKY A H. VRLA Battery virtual reference electrode: Battery float charge analysis[J]. IEEE Transactions on Energy Conversion, 2008, 23(3): 879-886.
|
3 |
GOODENOUGH J B, PARK K. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
4 |
YUAN Xianxia, LIU Hansan, ZHANG Jiujun. Lithium-ion batteries: Advanced materials and technologies[M]. USA: CRC Press, 2011: 35-62.
|
5 |
姚雷, 王震坡. 锂离子动力电池充电方式的研究[J]. 汽车工程, 2015, 37: 72-77.
|
|
YAO Lei, WANG Zhenpo. Research on Li-ion power battery charging methods[J]. Automotive Engineering, 2015, 37: 72-77.
|
6 |
NGUYEN T M, DILLENSEGER G, GLAIZE C, et al. Between floating and intermittent floating: Low-current self-discharge under compensation[C]//International Telecommunications Energy Conference, 2008.
|
7 |
乔瑞兴. 基于蓄电池阶段性浮充的可行性研究[C]//2017年中国通信能源会议论文集, 中国通信学会通信电源委员会, 2017: 205-207.
|
|
QIAO Ruixing. Feasibility study based on phased floating charging of batteries[C]//Proceedings of 2017 China Communication Energy Conference, Communication Power Supply Committee of China Institute of Communications, 2017: 205-207.
|
8 |
张太杰. 通信基站应急后备电源供电系统研究[J]. 通信电源技术, 2020, 37(2): 187-188.
|
|
ZHANG Taijie. Research on the emergency backup power supply system of communication base station[J]. Telecom Power Technologies, 2020, 37(2): 187-188.
|
9 |
TIPPMANN S, WALPER D, BALBOA L, et al. Low-temperature charging of lithium-ion cells (I): Electrochemical modeling[J]. Journal of Power Sources, 2014, 252: 305-316.
|
10 |
李丽珍, 戴海峰. 锂离子电池低温充电老化特性及影响因子分析[J]. 机电一体化, 2018, 24(Z1): 18-26.
|
|
LI Lizhen, DAI Haifeng. Low-temperature charging aging characteristics and influencing factors analysis of lithium-ion batteries[J]. Mechatronics, 2018, 24(Z1): 18-26.
|
11 |
WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries-a post-mortem study[J]. Journal of Power Sources, 2014, 262: 129-135.
|
12 |
齐明辉, 王政, 严家明, 等. 浮充保护型磷酸铁锂电池在煤矿中的应用[J]. 煤矿安全, 2019, 50(2): 113-116.
|
|
QI Minghui, WANG Zheng, YAN Jiaming, et al. Application of floating-charge protection type lithium iron phosphate battery in coal mine[J]. Safety in Coal Mines, 2019, 50(2): 113-116.
|
13 |
李懿洋. 锂离子电池低温充放电循环与高温浮充下的失效机理研究[D]. 北京: 清华大学, 2017.
|
|
LI Yiyang. Study on the failure mechanism of lithium-ion batteries under low-temperature charge-discharge cycles and high-temperature float charge[D]. Beijing: Tsinghua University, 2017.
|
14 |
TAKAHASHI M, SHODAI T. Float charging performance of lithium ion batteries with LiFePO4 cathode[J]. Electrochemical Society of Japan, 2010, 78(5): 342-344.
|
15 |
吴赟, 蒋新华, 解晶莹. 锂离子电池循环寿命快速衰减的原因[J]. 电池, 2009, 39(4): 206-207.
|
|
WU Yun, JIANG Xinhua, XIE Jingying. The reasons of rapid decline in cycle life of Li-ion battery[J]. Battery Bimonthly, 2009, 39(4): 206-207.
|
16 |
冯蕾, 朱威力. 基站蓄电池的管理与维护[J]. 产业与科技论坛, 2014, 13(11): 252-253.
|
|
FENG Lei, ZHU Weili. Management and maintenance of base station batteries[J]. Industrial Science Tribune, 2014, 13(11): 252-253.
|
17 |
HIROOKA M, SEKIYA T, OMOMO Y, et al. Degradation mechanism of LiCoO2 under float charge conditions and high temperatures[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134596.
|
18 |
XIA J, NELSON K J, LU Z H, et al. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells[J]. Journal of Power Sources, 2016, 329: 387-397.
|
19 |
YU Ziyang, BAI Maohui, SONG Wenfeng, et al. Influence of lithium difluorophosphate additive on the high voltage LiNi0.8Co0.1Mn0.1O2/graphite battery[J]. Ceramics International, 2021, 47(1): 157-162.
|
20 |
HIROOKA M, SEKIYA T, OMOMO Y, et al. Improvement of float charge durability for LiCoO2 electrodes under high voltage and storage temperature by suppressing O1-Phase transition[J]. Journal of Power Sources, 2020, 463: doi: 10.1016/j.jpowsour.2020.228127.
|
21 |
杜旭浩, 李秉宇, 苗俊杰, 等. 变电站蓄电池状态监测及火灾防控技术研究[J]. 电源技术, 2020, 44(3): 438-442.
|
|
DU Xuhao, LI Bingyu, MIAO Junjie, et al. Research on battery status monitoring and fire prevention and control technology in substations[J]. Chinese Journal of Power Sources, 2020, 44(3): 438-442.
|
22 |
桂长清. 密封铅蓄电池浮充电压的选择与控制[J]. 通信电源技术, 2000(3): 6-9.
|
|
GUI Changqing. Selection and control of floating charge voltage for sealed lead batteries[J]. Telecom Power Technologies, 2000(3): 6-9.
|
23 |
康彩云, 张乐, 张方建, 等. 磷酸铁锂电池在移动通信系统中的应用研究[C]//通信电源新技术论坛2011通信电源学术研讨会论文集, 中国通信学会通信电源委员会, 2011: 261-267.
|
|
KANG Caiyun, ZHANG Le, ZHANG Fangjian, et al. Application research of lithium iron phosphate battery in mobile communication system[C]//Communication Power New Technology Forum 2011 Communication Power Symposium Proceedings, Communication Power Supply Committee of China Institute of Communications, 2011: 261-267.
|
24 |
WEI Zengfu, ZHONG Guobin, SU Wei, et al. Float-charging characteristics of lithium iron phosphate battery based on direct-current power supply system in substation[J]. Journal of Energy Engineering, 2016, 142(1): doi: 10.1061/(ASCE)EY.1943-7897.0000273.
|
25 |
王立强, 王玮, 王占国, 等. 轨道交通用钛酸锂电池不一致性研究[J]. 电源技术, 2017, 41(2): 195-197+218.
|
|
WANG Liqiang, WANG Wei, WANG Zhanguo, et al. Research on the inconsistency of lithium titanate batteries for rail transit[J]. Chinese Journal of Power Sources, 2017, 41(2): 195-197+218.
|
26 |
郭光朝, 李相俊, 张亮, 等. 单体电压不一致性对锂电池储能系统容量衰减的影响[J]. 电力建设, 2016, 37(11): 23-28.
|
|
GUO Guangchao, LI Xiangjun, ZHANG Liang, et al. The influence of cell voltage inconsistency on the capacity attenuation of lithium battery energy storage system[J]. Electric Power Construction, 2016, 37(11): 23-28.
|
27 |
袁阳, 蔡久青, 汪文涛, 等. 后备锂电池组被动均衡系统设计[J]. 船电技术, 2019, 39(12): 55-57+61.
|
|
YUAN Yang, CAI Jiuqing, WANG Wentao, et al. Design of passive equalization system for backup lithium battery packs[J]. Marine Electric Electronic Engineering, 2019, 39(12): 55-57+61.
|
28 |
杨忠亮, 蒋新华, 於崇干. 磷酸铁锂蓄电池浮充特性提升策略研究[J]. 电器与能效管理技术, 2016(5): 72-75.
|
|
YANG Zhongliang, JIANG Xinhua, YU Chongqian. Research on the improvement strategy of floating charge characteristics of lithium iron phosphate batteries[J]. Electrical Energy Management Technology, 2016(5): 72-75.
|
29 |
段周敬, 任晓明, 陈道. 轨交储能锂电池主被动均衡策略的研究及应用[J]. 电源技术, 2019, 43(8): 1305-1308+1315.
|
|
DUAN Zhoujing, REN Xiaoming, CHEN Dao. Research and application of active and passive balancing strategies for rail transit energy storage lithium batteries[J]. Chinese Journal of Power Sources, 2019, 43(8): 1305-1308+1315.
|
30 |
李慧芳, 高俊奎, 李飞, 等. 锂离子电池浮充测试的鼓胀原因分析及改善[J]. 电源技术, 2013, 37(12): 2123-2126.
|
|
LI Huifang, GAO Junkui, LI Fei, et al. Cause analysis and improvement of swelling in floating charge test of lithium-ion battery[J]. Chinese Journal of Power Sources, 2013, 37(12): 2123-2126.
|
31 |
赵伟, 肖祥, 梅成林. 磷酸铁锂/石墨电池浮充工况下的失效机理研究[J]. 电源技术, 2020, 44(4): 492-495.
|
|
ZHAO Wei, XIAO Xiang, MEI Chenglin. Study on the failure mechanism of lithium iron phosphate/graphite battery under floating charging conditions[J]. Chinese Journal of Power Sources, 2020, 44(4): 492-495.
|
32 |
孔令丽, 张克军, 夏晓萌, 等. 高电压锂离子电池高温浮充性能影响因素分析与改善[J]. 储能科学与技术, 2019, 8(6): 1165-1170.
|
|
KONG Lingli, ZHANG Kejun, XIA Xiaomeng, et al. Analysis and improvement of factors affecting the high-temperature float charging performance of high-voltage lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1165-1170.
|
33 |
TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. A study on the cause of deterioration in float-charged lithium-ion batteries using LiMn2O4 as a cathode active material[J]. Journal of the Electrochemical Society, 2011, 158(3): A322-A325.
|
34 |
YI Shouzhong, WANG Bo, CHEN Ziang, et al. The difference in aging behaviors and mechanisms between floating charge and cycling of LiFePO4/graphite batteries [J]. Ionics, 2019, 25(5): 2139-2145.
|