储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 408-424.doi: 10.19799/j.cnki.2095-4239.2020.0402

• 储能材料与器件 • 上一篇    下一篇

富锂锰基层状氧化物正极材料面临的挑战及解决方案

张祖豪(), 丁晓凯, 罗冬(), 崔佳祥, 谢惠娴, 刘晨宇, 林展()   

  1. 广东工业大学轻工化工学院,广东 广州 510006
  • 收稿日期:2020-12-16 修回日期:2020-01-04 出版日期:2021-03-05 发布日期:2021-03-05
  • 通讯作者: 罗冬,林展 E-mail:zuhao1997@126.com;luodong@gdut.edu.cn;zhanlin@gdut.edu.cn
  • 作者简介:张祖豪(1997—),男,硕士研究生,研究方向为高能量密度锂离子电池正极材料,E-mail:zuhao1997@126.com
  • 基金资助:
    国家自然科学基金项目(51874104);国家重点研发计划项目(2011YFB0700600)

Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials

Zuhao ZHANG(), Xiaokai DING, Dong LUO(), Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN()   

  1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2020-12-16 Revised:2020-01-04 Online:2021-03-05 Published:2021-03-05
  • Contact: Dong LUO,Zhan LIN E-mail:zuhao1997@126.com;luodong@gdut.edu.cn;zhanlin@gdut.edu.cn

摘要:

纯电动汽车和插电式混合动力汽车的快速发展对锂离子电池的能量密度与循环寿命等提出了更高的要求,而正极材料是决定锂离子电池性能的最关键部分。富锂锰基层状氧化物(LMLOs)因具有高比容量(>250 mA·h/g)、高工作电压、低成本以及高安全性等优势被认为是下一代动力电池最有前景的正极材料。尽管如此,首次库仑效率低、电压衰减严重、循环以及倍率性能差等问题阻碍了其实际应用。本文就导致这些问题产生的根源进行了总结,包括不可逆的氧释放、层状结构向尖晶石结构的不可逆转变以及过渡金属离子的迁移和价态变化等。同时,分别从表面包覆、表面及体相掺杂、晶面调控以及表面集成结构四个方面总结了近年来国内外研究者们针对这些问题设计的解决方案。

关键词: 锂离子电池, 富锂锰基层状氧化物, 结构演变, 电压衰减, 正极材料

Abstract:

The rapid development of electric vehicle (EV) and hybrid electric vehicle (HEV) has put forward higher requirements on the energy density and cycle life of lithium-ion batteries. Cathode material is one of the most critical parts in determining the performance of lithium-ion batteries. Lithium-rich manganese-based layered oxides (LMLOs) are considered to be the most promising cathode materials for next-generation power batteries due to their high specific capacity (>250 mA·h/g), high work voltage, low cost and high safety. However, low initial coulombic efficiency, severe voltage fading, and poor cycle and rate performance prevent their practical application. This review summarizes the causes of the above-mentioned problems, including irreversible oxygen release, irreversible transformation from layered structure to spinel phase, and migration and valence change of transition metal ions. What’s more, some typical solutions reported by domestic and overseas researchers in recent years are also summarized from the following four aspects: surface coating, surface/bulk doping, crystal-facet control, and surface integrated structure, respectively.

Key words: lithium-ion batteries, lithium-rich manganese-based layered oxide, structural evolution, voltage fading, cathode materials

中图分类号: