储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 393-407.doi: 10.19799/j.cnki.2095-4239.2021.0059
乔荣涵(), 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2021-02-19
修回日期:
2021-02-23
出版日期:
2021-03-05
发布日期:
2021-03-05
作者简介:
乔荣涵(1998—),男,博士,研究生,研究方向为锂离子电池负极材料,E-mail:基金资助:
Ronghan QIAO(), Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-02-19
Revised:
2021-02-23
Online:
2021-03-05
Published:
2021-03-05
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2020年12月1日至2021年1月31日上线的锂电池研究论文,共有3193篇,选择其中100篇加以评论。层状正极材料的研究集中在高镍三元材料和富锂相材料,其相关研究关注表面包覆层、前驱体及合成条件、循环中的结构变化。硅基复合负极材料的研究重点包括对硅颗粒的包覆,具有三维结构的硅/碳、硅/铜复合电极。碳负极及金属锂负极,尤其是金属锂负极界面及三维结构设计,同样是受重点关注的研究对象。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物与氧化物固体电解质复合材料的合成以及相关性能研究。液态电解液方面包括提升石墨负极的性能,及适应高电压镍锰酸锂、三元层状材料、钴酸锂、富锂材料等正极材料电池的添加剂研究。针对固态电池,复合正极制备、双层电解质结构、锂金属界面修饰等都是主要研究内容,其他电池技术主要偏重方面还有三维结构锂硫正极设计,导电添加剂对正负极的影响等。表征分析涵盖了金属锂沉积过程、硅负极的体积膨胀问题、正极微结构和电池气胀问题。理论模拟工作涉及SEI形成机制以及厚电极电池的动力学,界面问题涉及层状正极固液态电池界面、液态电解质负极电极、固态电解质与Li界面等。
中图分类号:
乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2020.12.1—2021.1.31)[J]. 储能科学与技术, 2021, 10(2): 393-407.
Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(2): 393-407.
1 | LIN L, QIN K, ZHANG Q, et al. Li-rich Li2Ni0.8Co0.1Mn0.1O2 for anode-free lithium metal batteries[J]. Angewandte Chemie (International ed. in English), 2021, doi: 10.1002/anie.202017063. |
2 | CHEN M, ZHANG Z, SAVILOV S, et al. Enhanced structurally stable cathodes by surface and grain boundary tailoring of Ni-rich material with molybdenum trioxide[J]. Journal of Power Sources, 2020, doi: 10.1016/j.jpowsour.2020.229051. |
3 | DU F, SUN P, ZHOU Q, et al. Interlinking primary grains with lithium boron oxide to enhance the stability of LiNi0.8Co0.15Al0.05O2[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c16159. |
4 | JAIN R, YUAN Y, SINGH Y, et al. Alloying of alkali metals with tellurene[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202003248. |
5 | TIAN H-K, JALEM R, GAO B, et al. Electron and ion transfer across interfaces of the NASICON-type LATP solid electrolyte with electrodes in all-solid-state batteries: A density functional theory study via an explicit interface model[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54752-54762. |
6 | XIONG C, LIU F, GAO J, et al. One-spot facile synthesis of single-crystal LiNi0.5Co0.2Mn0.3O2 cathode materials for Li-ion batteries[J]. ACS Omega, 2020, 5(47): 30356-30362. |
7 | DU F, ZHOU Q, CAO H, et al. Confined growth of primary grains towards stabilizing integrated structure of Ni-rich materials[J]. Journal of Power Sources, 2020, doi: 10.1016/j.jpowsour.2020.228737. |
8 | MESNIER A, MANTHIRAM A. Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52826-52835. |
9 | LIU Y, WU H, WANG Y, et al. Impact of shell composition, thickness and heating temperature on the performance of nickel-rich cobalt-free core-shell materials[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abd571. |
10 | ZENG K, LI T, QIN X, et al. A combination of hierarchical pore and buffering layer construction for ultrastable nanocluster Si/SiOx anode[J]. Nano Research, 2020, 13(11): 2987-2993. |
11 | BI Y, TAO J, WU Y, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode[J]. Science, 2020, 370(6522): 1313-1317. |
12 | KIM D W, ZETTSU N, SHIIBA H, et al. Metastable oxysulfide surface formation on LiNi0.5Mn1.5O4 single crystal particles by carbothermal reaction with sulfur-doped heterocarbon nanoparticles: New insight into their structural and electrochemical characteristics, and their potential applications[J]. Journal of Materials Chemistry A, 2020, 8(42): 22302-22314. |
13 | ARIYOSHI K, TANIMOTO M, YAMADA Y. Impact of particle size of lithium manganese oxide on charge transfer resistance and contact resistance evaluated by electrochemical impedance analysis[J]. Electrochimica Acta, 2020, 364: doi: 10.1016/j.electacta.2020. 137292. |
14 | SHI J, ZU L, GAO H, et al. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management[J]. Advanced Functional Materials, 2020, 30(35): doi: 10.1002/adfm.202002980. |
15 | CAO L, HUANG T, ZHANG Q, et al. Porous Si/Cu anode with high initial coulombic efficiency and volumetric capacity by comprehensive utilization of laser additive manufacturing-chemical dealloying[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami. 0c16887. |
16 | BAI M, YANG L, JIA Q, et al. Encasing prelithiated silicon species in the graphite scaffold: An enabling anode design for the highly reversible, energy-dense cell model[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47490-47502. |
17 | MADDIPATLA R, LOKA C, LEE K S. Electrochemical performance of an ultrathin surface oxide- modulated nano-Si anode confined in a graphite matrix for highly reversible lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54608-54618. |
18 | TANG R, ZHENG X, ZHANG Y, et al. Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries[J]. Ionics, 2020, 26(12): 5889-5896. |
19 | BARMANN P, KRUEGER B, CASINO S, et al. Impact of the crystalline Li15Si4 phase on the self-discharge mechanism of silicon negative electrodes in organic electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55903-55912. |
20 | ENTWISTLE J E, BOOTH S G, KEEBLE D S, et al. Insights into the electrochemical reduction products and processes in silica anodes for next-generation lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(43): doi: 10.1002/aenm.202001826. |
21 | DENG Q, WANG M, PENG Z, et al. Ultrafast Li+ diffusion kinetics enhanced by cross-stacked nanosheets loaded with Co3O4@NiO nanoparticles: Constructing superstructure to enhance Li-ion half/full batteries[J]. Journal of Colloid and Interface Science, 2021, 585: 51-60. |
22 | HENG S, CAO Z, WANG Y, et al. In situ transformed solid electrolyte interphase by implanting a 4-vinylbenzoic acid nanolayer on the natural graphite surface[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33408-33420. |
23 | HUANG Z, CHOUDHURY S, GONG H, et al. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium[J]. Journal of the American Chemical Society, 2020, 142(51): 21393-21403. |
24 | ZHOU M, ZHAO J, QIU S, et al. Structural and electrochemical properties of Li1.2Ni0.16Mn0.54Co0.08O2-Al2O3 composite prepared by atomic layer deposition as the cathode material for libs[J]. International Journal of Electrochemical Science, 2020, 15(11): 10759-10771. |
25 | LIN L, SUO L, HU Y S, et al. Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003709. |
26 | ALESHIN A, BRAVO S, REDQUEST K, et al. Rapid oxidation and reduction of lithium for improved cycling performance and increased homogeneity[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2654-2661. |
27 | XIA S, ZHANG X, LUO L, et al. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers[J]. Small, 2020, doi: 10.1002/smll.202006002. |
28 | HUANG S, CHEN L, WANG T, et al. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries[J]. Nano Letters, 2021, 21(1): 791-797. |
29 | REN Q Q, YU F D, ZHANG C M, et al. High-performance ternary metal oxide anodes for lithium storage[J]. Ceramics International, 2020, 46(18): 28914-28921. |
30 | ZHUO R, QUAN W, HUANG X, et al. Well-dispersed tin nanoparticles encapsulated in amorphous carbon tubes as high-performance anode for lithium ion batteries[J]. Nanotechnology, 2021, 32(14): doi: 10.1088/1361-6528/abd4a1. |
31 | TALLMAN K R, YAN S, QUILTY C D, et al. Improved capacity retention of lithium ion batteries under fast charge via metal-coated graphite electrodes[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abcaba. |
32 | LIU C, WANG J, KOU W, et al. A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2021, 404: doi: 10.1016/j.cej.2020.126517. |
33 | AMORES M, EL-SHINAWI H, MCCLELLAND I, et al. Li1.5La1.5MO6 (M=W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 6392-6392. |
34 | BUI T T, YUN B, DARKO K, et al. Solution processing of lithium-rich amorphous Li-La-Zr-O ion conductor and its application for cycling durability improvement of LiCoO2 cathode as coating layer[J]. Advanced Materials Interfaces, 2021, doi: 10.1002/admi.202001767. |
35 | BREDDEMANN U, SICKLINGER J, SCHIPPER F, et al. Fluorination of Ni-rich lithium-ion battery cathode materials by fluorine gas: Chemistry, characterization, and electrochemical performance in full-cells[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000202. |
36 | GAUTAM A, SADOWSKI M, GHIDIU M, et al. Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202003369. |
37 | YERSAK T, SALVADOR J R, SCHMIDT R D, et al. Hybrid Li-S pouch cell with a reinforced sulfide glass solid-state electrolyte film separator[J]. International Journal of Applied Glass Science, 2021, 12(1): 124-134. |
38 | SUZUKI K, YAGETA A, IKEDA Y, et al. Precipitation of the lithium superionic conductor Li10GeP2S12 by a liquid-phase process[J]. Chemistry Letters, 2020, 49(11): 1379-1381. |
39 | YAMAMOTO K, TAKAHASHI M, OHARA K, et al. Synthesis of sulfide solid electrolytes through the liquid phase: Optimization of the preparation conditions[J]. ACS Omega, 2020, 5(40): 26287-26294. |
40 | JIANG Z, LIANG T, LIU Y, et al. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54662-54670. |
41 | GUO Y, GUAN H, PENG W, et al. Enhancing the electrochemical performances of Li7P3S11 electrolyte through P2O5 substitution for all-solid-state lithium battery[J]. Solid State Ionics, 2020, 358: doi: 10.1016/j.ssi.2020.115506. |
42 | YAO Y X, CHEN X, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202011482. |
43 | SHANG H, PENG G, LIU W, et al. Improving the cyclic stability of LiNi0.5Mn1.5O4 at high cutoff voltage by using pyrene as a novel additive[J]. Energy Technology, 2020, 8(10): doi: 10.1002/ente. 202000671. |
44 | LI S, LI Y, ZHAO D, et al. Adaptive state of charge estimation for lithium-ion batteries based on implementable fractional-order technology[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101838. |
45 | SHANG H, JIANG J, ZHANG H, et al. 7-hydroxycoumarin as a novel film-forming additive for LiNi0.5Mn1.5O4 cathode at elevated temperature[J]. Chemelectrochem, 2020, 7(22): 4655-4662. |
46 | HAN S, LIU S, GAO J, et al. Enhancement of operating voltage and temperature range by adding lithium bis(fluorosulfonyl)imide as electrolyte additive[J]. Chemistryselect, 2020, 5(44): 14008-14016. |
47 | HIEU QUANG P, MIROLO M, TARIK M, et al. Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells[J]. Energy Storage Materials, 2020, 33: 216-229. |
48 | PHAM H Q, CHUNG G J, HAN J, et al. Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite parallel to LiCoO2 pouch cell under -20 ℃[J]. Journal of Chemical Physics, 2020, 152(9): doi: 10.1063/1.5144280. |
49 | WANG X, LU Y, GENG D, et al. Planar fully stretchable lithium-ion batteries based on a lamellar conductive elastomer[J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53774-53780. |
50 | ZHAO J, LIANG Y, ZHANG X, et al. In situ construction of uniform and robust cathode-electrolyte interphase for Li-rich layered oxides[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202009192. |
51 | ELIZALDE-SEGOVIA R, IRSHAD A, ZAYAT B, et al. Solid-state lithium-sulfur battery based on composite electrode and bi-layer solid electrolyte operable at room temperature[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc4c0. |
52 | CAI L, WAN H, ZHANG Q, et al. In situ coating of Li7P3S11 electrolyte on CuCo2S4/graphene nanocomposite as a high-performance cathode for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33810-33816. |
53 | MA T, WU S, WANG F, et al. Degradation mechanism study and safety hazard analysis of overdischarge on commercialized lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56086-56094. |
54 | HUO H, GAO J, ZHAO N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, 12(1): 176-176. |
55 | YANG X, GAO X, MUKHERJEE S, et al. Phase evolution of a prenucleator for fast Li nucleation in all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(37): doi: 10.1002/aenm.202001191. |
56 | KIM K J, RUPP J L M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(12): 4930-4945. |
57 | IHRIG M, FINSTERBUSCH M, TSAI C L, et al. Low temperature sintering of fully inorganic all-solid-state batteries-impact of interfaces on full cell performance[J]. Journal of Power Sources, 2021, 482: doi: 10.1016/j.jpowsour.2020.228905. |
58 | DING Z, YANG C, ZOU J, et al. Reaction mechanism and structural evolution of fluorographite cathodes in solid-state K/Na/Li batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202006118. |
59 | JU Z, ZHANG X, KING S T, et al. Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems[J]. Applied Physics Reviews, 2020, 7(4): doi: 10.1016/j.jpowsour.2020.228905. |
60 | JESCHULL F, TRABESINGER S. Fast-charge limitations for graphite anodes with Si as capacity-enhancing additive[J]. Batteries & Supercaps, 2021, 4(1): 131-139. |
61 | LEE J K, YOON J R. Effect of the conductive materials and press ratio of an anode electrode on the electrical properties in a lithium-ion battery using SiOx[J]. Journal of Ceramic Processing Research, 2020, 21(5): 533-538. |
62 | LIU H, CHEN T, XU Z, et al. High-safety and long-life silicon-based lithium-ion batteries via a multifunctional binder[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54842-54850. |
63 | FAN Y, RAHMAN M M, TAO T, et al. Ultra-fast and high-energy density polysulfide-eight ion batteries[J]. Journal of Power Sources, 2020, 477: doi: 10.1016/j.jpowsour.2020.229018. |
64 | BAEK M, SHIN H, CHAR K, et al. New high donor electrolyte for lithium-sulfur batteries[J]. Advanced Materials, 2020, 32(52): doi: 10.1002/adma.202005022. |
65 | XU S, KWOK C Y, ZHOU L, et al. A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202004239. |
66 | YANG X X, LI X T, ZHAO C F, et al. Promoted deposition of three-dimensional Li2S on catalytic co phthalocyanine nanorods for stable high-loading lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32752-32763. |
67 | AZACETA E, GARCIA S, LEONET O, et al. Particle atomic layer deposition as an effective way to enhance Li-S battery energy density[J]. Materials Today Energy, 2020, 18: doi: 10.1016/j.mtener.2020.100567. |
68 | GHASHGHAIE S, HO-SUM S, FANG J, et al. Electrophoretically deposited binder-free 3-D carbon/sulfur nanocomposite cathode for high-performance Li-S batteries[J]. Journal of Energy Chemistry, 2020, 48: 92-101. |
69 | YIN F, JIN Q, GAO H, et al. A strategy to achieve high loading and high energy density Li-S batteries[J]. Journal of Energy Chemistry, 2021, 53: 340-346. |
70 | GUO D, LI X, WAHYUDI W, et al. Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li-S batteries[J]. ACS Nano, 2020, 14(12): 17163-17173. |
71 | AZAMI-GHADKOLAI M, YOUSEFI M, ALLU S, et al. Effect of isotropic and anisotropic porous microstructure on electrochemical performance of Li ion battery cathodes: An experimental and computational study[J]. Journal of Power Sources, 2020, 474: doi: 10.1016/j.jpowsour.2020.228490. |
72 | PARK K Y, PARK J W, SEONG W M, et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228369. |
73 | LIANG C, ZHANG X, XIA S, et al. Unravelling the room-temperature atomic structure and growth kinetics of lithium metal[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19206-w. |
74 | WANG X, PAWAR G, LI Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345. |
75 | YOON D H, MARINARO M, AXMANN P, et al. Study of the binder influence on expansion/contraction behavior of silicon alloy negative electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abcf4f. |
76 | PRADO A Y R, RODRIGUES M T F, TRASK S E, et al. Electrochemical dilatometry of Si-bearing electrodes: Dimensional changes and experiment design[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abd465. |
77 | SCHMITT J, KRAFT B, SCHMIDT J P, et al. Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. Journal of Power Sources, 2020, 478: doi: 10.1016/j.jpowsour.2020.228661. |
78 | LIAO Z, ZHANG S, ZHAO Y, et al. Experimental evaluation of thermolysis-driven gas emissions from LiPF6-carbonate electrolyte used in lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 124-135. |
79 | ZHANG X, HE J, ZHOU J, et al. Thickness evolution of commercial Li-ion pouch cells with silicon-based composite anodes and NCA cathodes[J]. Science China-Technological Sciences, 2021, 64(1): 83-90. |
80 | BOBNAR J, VIZINTIN A, KAPUN G, et al. A new cell configuration for a more precise electrochemical evaluation of an artificial solid-electrolyte interphase[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000255. |
81 | ROBERTSON D C, FLORES L, DUNLOP A R, et al. Effect of anode porosity and temperature on the performance and lithium plating during fast-charging of lithium-ion cells[J]. Energy Technology, 2021, 9(1): doi: 10.1002/ente.202000666. |
82 | WEI C, HONG Y, TIAN Y, et al. Quantifying redox heterogeneity in single-crystalline LiCoO2 cathode particles[J]. Journal of Synchrotron Radiation, 2020, 27: 713-719. |
83 | LU X, DAEMI S R, BERTEI A, et al. Microstructural evolution of battery electrodes during calendering[J]. Joule, 2020, 4(12): 2746-2768. |
84 | DE LA TORRE-GAMARRA C, SOTOMAYOR M, BUCHELI W, et al. Tape casting manufacturing of thick Li4Ti5O12 ceramic electrodes with high areal capacity for lithium-ion batteries[J]. Journal of the European Ceramic Society, 2021, 41(1): 1025-1032. |
85 | CAI C, NIE Z, ROBINSON J P, et al. Thick sintered electrode lithium-ion battery discharge simulations: Incorporating lithiation-dependent electronic conductivity and lithiation gradient due to charge cycle[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1002/adma.200903650. |
86 | CHENG J, MU L, WANG C, et al. Enhancing surface oxygen retention through theory-guided doping selection in Li1-xNiO2 for nxt-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(44): 23293-23303. |
87 | BAI J, SUN W, ZHAO J, et al. Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides[J]. Chemistry of Materials, 2020, 32(23): 9906-9913. |
88 | QU J, XIAO J, WANG T, et al. High rate transfer mechanism of lithium ions in lithium-tin and lithium-indium alloys for lithium batteries[J]. Journal of Physical Chemistry C, 2020, 124(45): 24644-24652. |
89 | NIU S, ZHANG S W, SHI R, et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries[J]. Energy Storage Materials, 2020, 33: 73-81. |
90 | GUO H J, WANG H X, GUO Y J, et al. Dynamic evolution of a cathode interphase layer at the surface of LiNi0.5Co0.2Mn0.3O2 in quasi-solid-state lithium batteries[J]. Journal of the American Chemical Society, 2020, 142(49): 20752-20762. |
91 | YANG Z, MORRISSETTE J W, MEISNER Q, et al. Extreme fast-charging of lithium-ion cells: Effect on anode and electrolyte[J]. Energy Technology, 2021, 9(1): doi: 10.1002/ente.202000696. |
92 | STETSON C, SCHNABEL M, LI Z, et al. Microscopic observation of solid electrolyte interphase bilayer inversion on silicon oxide[J]. ACS Energy Letters, 2020, 5(12): 3657-3662. |
93 | CHENG D, WYNN T A, WANG X, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy[J]. Joule, 2020, 4(11): 2484-2500. |
94 | WESTOVER A S, SACCI R L, DUDNEY N. Electroanalytical measurement of interphase formation at a Li metal-solid electrolyte interface[J]. ACS Energy Letters, 2020, 5(12): 3860-3867. |
95 | HOOD Z D, CHEN X, SACCI R L, et al. Elucidating interfacial stability between lithium metal anode and Li phosphorus oxynitride via in situ electron microscopy[J]. Nano Letters, 2020, doi: 10.1021/acs.nanolett.0c03438. |
96 | RIEGGER L, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angewandte Chemie (International ed. in English), 2020, doi: 10.1002/anie.202015238. |
97 | WAN J, SONG Y X, CHEN W P, et al. Micromechanism in all-solid-state alloy-metal batteries: Regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution[J]. Journal of the American Chemical Society, 2021, 143(2): 839-848. |
98 | CONNELL J G, FUCHS T, HARTMANN H, et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium metal[J]. Chemistry of Materials, 2020, 32(23): 10207-10215. |
99 | OTOYAMA M, SUYAMA M, HOTEHAMA C, et al. Visualization and control of chemically induced crack formation in all-solid-state lithium-metal batteries with sulfide electrolyte[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.0c18314. |
100 | LING H, SHEN L, HUANG Y, et al. Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 56995-57002. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[7] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[8] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[11] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[12] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[13] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[14] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[15] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||