储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 408-424.doi: 10.19799/j.cnki.2095-4239.2020.0402
张祖豪(), 丁晓凯, 罗冬(), 崔佳祥, 谢惠娴, 刘晨宇, 林展()
收稿日期:
2020-12-16
修回日期:
2020-01-04
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
罗冬,林展
E-mail:zuhao1997@126.com;luodong@gdut.edu.cn;zhanlin@gdut.edu.cn
作者简介:
张祖豪(1997—),男,硕士研究生,研究方向为高能量密度锂离子电池正极材料,E-mail:基金资助:
Zuhao ZHANG(), Xiaokai DING, Dong LUO(), Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN()
Received:
2020-12-16
Revised:
2020-01-04
Online:
2021-03-05
Published:
2021-03-05
Contact:
Dong LUO,Zhan LIN
E-mail:zuhao1997@126.com;luodong@gdut.edu.cn;zhanlin@gdut.edu.cn
摘要:
纯电动汽车和插电式混合动力汽车的快速发展对锂离子电池的能量密度与循环寿命等提出了更高的要求,而正极材料是决定锂离子电池性能的最关键部分。富锂锰基层状氧化物(LMLOs)因具有高比容量(>250 mA·h/g)、高工作电压、低成本以及高安全性等优势被认为是下一代动力电池最有前景的正极材料。尽管如此,首次库仑效率低、电压衰减严重、循环以及倍率性能差等问题阻碍了其实际应用。本文就导致这些问题产生的根源进行了总结,包括不可逆的氧释放、层状结构向尖晶石结构的不可逆转变以及过渡金属离子的迁移和价态变化等。同时,分别从表面包覆、表面及体相掺杂、晶面调控以及表面集成结构四个方面总结了近年来国内外研究者们针对这些问题设计的解决方案。
中图分类号:
张祖豪, 丁晓凯, 罗冬, 崔佳祥, 谢惠娴, 刘晨宇, 林展. 富锂锰基层状氧化物正极材料面临的挑战及解决方案[J]. 储能科学与技术, 2021, 10(2): 408-424.
Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials[J]. Energy Storage Science and Technology, 2021, 10(2): 408-424.
1 | GOODENOUGH J B. Energy storage materials: A perspective[J]. Energy Storage Materials, 2015, 1: 158-161. |
2 | KALLURI S, YOON M, JO M, et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Advanced Energy Materials, 2017, 7 (1): doi: 10.1002/aenm.201601507. |
3 | ZHANG Z K, MCNALL B, KANAGARAJ A B, et al. Electrochemical characterization of LiMn2O4 nanowires fabricated by sol-gel for lithium-ion rechargeable batteries[J]. Materials Letters, 2020, 273: doi: 10.1016/j.matlet.2020.127923. |
4 | YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148 (3): A224-A229. |
5 | LUO D, FANG S H, TIAN Q H, et al. Uniform LiMO2 assembled microspheres as superior cycle stability cathode materials for high energy and power Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (44): 22026-22030. |
6 | WANG J, HE X, PAILLARD E, et al. Lithium‐ and manganese‐rich oxide cathode materials for high‐energy lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(21): doi: 10.1002/aenm.201600906. |
7 | NUMATA K, SAKAKI C, YAMANAKA S. Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3[J]. Solid State Ionics, 1999, 117(3/4): 257-263. |
8 | NUMATA K, SAKAKI C, YAMANAKA S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode material of secondary lithium batteries[J]. Chemistry Letters, 1997, 8(8): 725-726. |
9 | ZUO Y, LI B, JIANG N, et al. A high‐capacity O2‐type Li‐rich cathode material with a single‐layer Li2MnO3 superstructure[J]. Advanced Materials, 2018, 30 (16): doi: 10.1002/adma.201707255. |
10 | ZHENG J, MYEONG S, CHO W, et al. Li‐ and Mn‐rich cathode materials: Challenges to commercialization[J]. Advanced Energy Materials, 2016, 7 (6): doi: 10.1002/aenm.201601284. |
11 | SATHIYA M, ABAKUMOV A M, FOIX D, et al. Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nature Materials, 2015, 14 (2): 230-238. |
12 | KLEINER K, STREHLE B, BAKER A R, et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides: A long-duration in situ synchrotron powder diffraction study[J]. Chemistry of Materials, 2018, 30(11): 3656-3667. |
13 | XIAO B, WANG P B, ZHANG B, et al. Effect of MgO and TiO2 coating on the electrochemical performance of Li‐rich cathode materials for lithium‐ion batteries[J]. Energy Technology, 2019, 7(8): doi: 10.1002/ente.201800829. |
14 | CHONG S, CHEN Y, YAN W, et al. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries[J]. Journal of Power Sources, 2016, 332: 230-239. |
15 | HU E, YU X, LIN R, et al. Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3(8): 690-698. |
16 | YU X, LYU Y, GU L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, 4(5): doi: 10.1002/aenm.201300950. |
17 | ATES M N, MUKERJEE S, ABRAHAM K M. A Li-rich layered cathode material with enhanced structural stability and rate capability for Li-on batteries[J]. Journal of the Electrochemical Society, 2014, 161(3): A355-A363. |
18 | ZHENG J, SHI W, GU M, et al. Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2[J]. Journal of the Electrochemical Society, 2013, 160(11): A2212-A2219. |
19 | YANG J, LI P, ZHONG F, et al. Suppressing voltage fading of Li‐rich oxide cathode via building a well‐protected and partially‐protonated surface by polyacrylic acid binder for cycle‐stable Li‐ion batteries[J]. Advanced Energy Materials, 2020, 10(15): doi: 10.1002/aenm.201904264. |
20 | XU Z, CI L, YUAN Y, et al. Potassium prussian blue-coated Li-rich cathode with enhanced lithium ion storage property[J]. Nano Energy, 2020: doi: 10.1016/j.nanoen.2020.104942. |
21 | DUAN J, TANG W, WANG R, et al. Inhibited voltage decay and enhanced electrochemical performance of the Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material by CeAlOδ surface coating modification[J]. Applied Surface Science, 2020, 521: doi: 10.1016/j.apsusc.2020.146504. |
22 | SU Y, YUAN F, CHEN L, et al. Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating[J]. Journal of Energy Chemistry, 2020, 51: 39-47. |
23 | LIU P, ZHANG H, HE W, et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode[J]. Journal of the American Chemical Society, 2019, 141 (27): 10876-10882 |
24 | DONG S, ZHOU Y, HAI C, et al. Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials[J]. Journal of Power Sources, 2020, 462: doi: 10.1016/j.jpowsour.2020.228185. |
25 | LIU S, LIU Z, SHEN X, et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide[J]. Advanced Energy Materials, 2018, 8(31): doi: 10.1002/aenm.201802105. |
26 | LIU Y, WANG J, WU J, et al. 3D cube‐maze‐like Li‐rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium‐ion batteries[J]. Advanced Energy Materials, 2019, 10(5): doi: 10.1002/aenm.201903139. |
27 | MENG J, XU H, MA Q, et al. Precursor pre-oxidation enables highly exposed plane {010} for high-rate Li-rich layered oxide cathode materials[J]. Electrochimica Acta, 2019, 309: 326-338. |
28 | MA Y, LIU P, XIE Q, et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode[J]. Nano Energy, 2019, 59: 184-196. |
29 | WU B, YANG X, JIANG X, et al. Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(37): doi: 10.1002/adfm.201803392. |
30 | QIU B, ZHANG M, WU L, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nature Communications, 2016, 7(1): doi: 10.1038/ncomms12108. |
31 | LUO D, FANG S, YANG L, et al. Preparation of layered-spinel microsphere/reduced graphene oxide cathode materials for ultrafast charge-discharge lithium-ion batteries[J]. ChemSusChem, 2017, 10(24): 4845-4850. |
32 | XIA Q, ZHAO X, XU M, et al. A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method[J]. Journal of Materials Chemistry A, 2015, 3(7): 3995-4003. |
33 | CHEN L, SU Y, CHEN S, et al. Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries[J]. Advanced Materials, 2014, 26(39): 6756-6760. |
34 | DING X, LUO D, CUI J, et al. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(20): 7778-7782. |
35 | ZHU Z, YU D, YANG Y, et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment[J]. Nature Energy, 2019, 4(12): 1049-1058. |
36 | YU H, ZHOU H. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2013, 4(8): 1268-1280. |
37 | YAN P, NIE A, ZHENG J, et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries[J]. Nano Letters, 2015, 15(1): 514-522. |
38 | CROY J R, BALASUBRAMANIAN M, GALLAGHER K G, et al. Review of the US department of energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes[J]. Accounts of Chemical Research, 2015, 48(11): 2813-2821. |
39 | THACKERAY M M, JOHNSON C S, VAUGHEY J T, et al. Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2005, 15(23): 2257-2267. |
40 | KANG S H, KEMPGENS P, GREENBAUM S, et al. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0 ≤ x ≤ 0.5)[J]. Journal of Materials Chemistry, 2007, 17(20): 2069-2077. |
41 | LANZ P, VILLEVIEILLE C, NOVÁK P. Ex situ and in situ raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, Mn)[J]. Electrochimica Acta, 2014, 130: 206-212. |
42 | JARVIS K A, DENG Z, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16): 3614-3621. |
43 | Xiao B, Sun X. Surface and subsurface reactions of lithium transition metal oxide cathode materials: An overview of the fundamental origins and remedying approaches[J]. Advanced Energy Materials, 2018, 8(29): doi: 10.1002/aenm.201802057. |
44 | XIAO B, LIU H, CHEN N, et al. Size-mediated recurring spinel sub-nanodomains in Li- and Mn-rich layered cathode materials[J]. Angewandte Chemie International Edition, 2020, 59(34): 14313-14320. |
45 | ENYUAN H, XIQIAN Y, RUOQIAN L, et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3(8): 690-698. |
46 | XU J, SUN M, QIAO R, et al. Elucidating anionic oxygen activity in lithium-rich layered oxides[J]. Nature Communications, 2018, 9(1): doi: 10.1038/s41467-018-03403-9. |
47 | YU H, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Letters, 2016, 16(5): 2907-2915. |
48 | KLEINER, KARIN, STREHLE, et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study[J]. Chemistry of Materials, 2018, 30(11): 3656-3667. |
49 | LUO K, ROBERTS M R, HAO R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry, 2016, 8(7): 684-691. |
50 | PEREZ A J, JACQUET Q, BATUK D, et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4[J]. Nature Energy, 2017, 2(12): 954-962. |
51 | ROZIER P, TARASCON J M. Review-Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges[J]. Journal of the Electrochemical Society, 2015, 162(14): A2490-A2499. |
52 | ZHENG J, GU M, XIAO J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process[J]. Nano Letters, 2013, 13(8): 3824 -3830. |
53 | LI N, HWANG S, SUN M, et al. Unraveling the voltage decay phenomenon in Li-rich layered oxide cathode of no oxygen activity[J]. Advanced Energy Materials, 2019, 9(47): doi: 10.1002/aenm.201902258. |
54 | NAYAK P K, ERICKSON E M, SCHIPPER F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li‐ and Mn‐rich cathode materials for Li‐ion batteries[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201702397. |
55 | NAYAK P K, GRINBLAT J, LEVI E, et al. Remarkably improved electrochemical performance of Li- and Mn-rich cathodes upon substitution of Mn with Ni[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4309-4319. |
56 | SETENI B, RAPULENYANE N, NGILA J C, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries[J]. Journal of Power Sources, 2017, 353: 210-220. |
57 | RASTGOO-DEYLAMI M, JAVANBAKHT M, OMIDVAR H. Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2[J]. Solid State Ionics, 2019, 331: 74-88. |
58 | XIE Y, CHEN S, LIN Z, et al. Enhanced electrochemical performance of Li-rich layered oxide, Li1.2Mn0.54Co0.13Ni0.13O2, by surface modification derived from a MOF-assisted treatment[J]. Electrochemistry Communications, 2019, 99: 65-70. |
59 | JIN Y, XU Y, SUN X, et al. Electrochemically active MnO2 coated Li1.2Ni0.18Co0.04Mn0.58O2 cathode with highly improved initial coulombic efficiency[J]. Applied Surface Science, 2016, 384: 125-134. |
60 | GUO S, YU H, LIU P, et al. Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(12): 4422-4428. |
61 | HAN E, LI Y, ZHU L, et al. The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries[J]. Solid State Ionics, 2014, 255: 113-119. |
62 | ZHOU L, YIN Z, TIAN H, et al. Spinel-embedded and Li3PO4 modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for high-performance Li-ion battries[J]. Applied Surface Science, 2018, 456: 763-770. |
63 | ZHAO T, LI L, CHEN R, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries[J]. Nano Energy, 2015, 15: 164-176. |
64 | ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials[J]. Chemistry of Materials, 2014, 26(22): 6320-6327. |
65 | HU S, LI Y, CHEN Y, et al. Insight of a phase compatible surface coating for long‐durable Li‐rich layered oxide cathode[J]. Advanced Energy Materials, 2019, 9(34): doi: 10.1002/aenm.201901795. |
66 | BAK S M, SHADIKE Z, LIN R Q, et al. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research[J]. NPG Asia Materials, 2018, 10(7): 563-580. |
67 | HUIMIAN L, HUAJUN G, ZHIXING W, et al. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes by chromium doping[J]. International Journal of Hydrogen Energy, 2018, 43(24): 11109-11119. |
68 | LIU Y, ZHANG Z, GAO Y, et al. Mitigating the voltage decay and improving electrochemical properties of layered-spinel Li1.1Ni0.25Mn0.75O2.3 cathode material by Cr doping[J]. Journal of Alloys and Compounds, 2016, 657: 37-43. |
69 | WANG Y, YANG Z, QIAN Y, et al. New insights into improving rate performance of lithium‐rich cathode material[J]. Advanced Materials, 2015, 27(26): 3915-3920. |
70 | YAN W, XIE Y, JIANG J, et al. Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4625-4632. |
71 | MA Q, LI R, ZHENG R, et al. Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen[J]. Journal of Power Sources, 2016, 331: 112-121. |
72 | YU R, WANG G, LIU M, et al. Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping[J]. Journal of Power Sources, 2016, 335: 65-75. |
73 | CHEN H, HU Q, HUANG Z, et al. Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery[J]. Ceramics International, 2016, 42(1): 263-269. |
74 | ZHENG Z, GUO X D, ZHONG Y J, et al. Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt: toward superior electrochemical performances[J]. Electrochimica Acta, 2016, 188: 336-343. |
75 | LI Q, LI G, FU C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10330-10341. |
76 | NING D, ZHENG L, ZHANG Q, et al. Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO43- with Na3PO4[J]. Journal of Power Sources, 2018, 375: 1-10. |
77 | LIU D, FAN X, LI Z, et al. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries[J]. Nano Energy, 2019, 58: 786-796. |
78 | ZHOU H, GUAN H, YIN C, et al. A potassium/chloride ion co-doped cathode material Li1.18K0.02Ni0.2Mn0.6O1.98Cl0.02 with enhanced electrochemical performance for lithium ion batteries[J]. Journal of Materials Science Materials in Electronics, 2019, 31 (1) : 572-580. |
79 | LIU Y, HE B, LI Q, et al. Relieving capacity decay and voltage fading of Li1.2Ni0.13Co0.13Mn0.54O2 by Mg2+ and PO43- dual doping[J]. Materials Research Bulletin, 2020, 130: doi: 10.1016/j.materresbull.2020.110923. |
80 | LIU S, LIU Z, SHEN X, et al. Surface doping to enhance structural integrity and performance of Li‐rich layered oxide[J]. Advanced Energy Materials, 2018, 8(31): doi: 10.1002/aenm.201802105. |
81 | ZHANG X, CAO S, YU R, et al. Improving electrochemical performances of Li-rich layered Mn-based oxide cathodes through K2Cr2O7 solution treatment[J]. ACS Applied Energy Materials, 2019, 2(2): 1563-1571. |
82 | QING R P, SHI J L, XIAO D D, et al. Enhancing the kinetics of Li‐rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Advanced Energy Materials, 2016, 6(6): doi: 10.1002/aenm.201501914. |
83 | ZHAO Y, LIU J, WANG S, et al. Surface structural transition induced by gradient polyanion‐doping in Li‐rich layered oxides: Implications for enhanced electrochemical performance[J]. Advanced Functional Materials, 2016, 26(26): 4760-4767. |
84 | WEI G Z, LU X, KE F S, et al. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O for high-rate performance lithium-ion batteries[J]. Advanced Materials, 2010, 22(39): 4364-4367. |
85 | CHEN H, GREY C P. Molten salt synthesis and high rate performance of the "desert-rose" form of LiCoO2[J]. Advanced Materials, 2008, 20(11): 2206-2210. |
86 | CHEN L, SU Y, CHEN S, et al. Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries[J]. Advanced Materials, 2014, 26(39): 6756-6760. |
87 | ZHANG L, LI N, WU B, et al. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable Li-ion batteries[J]. Nano Letters, 2015, 15(1): 656-661. |
88 | WEI W, CHEN L, PAN A, et al. Roles of surface structure and chemistry on electrochemical processes in lithium-rich layered oxide cathodes[J]. Nano Energy, 2016, 30: 580-602. |
89 | XU B, FELL C R, CHI M, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study[J]. Energy & Environmental Science, 2011, 4(6): 2223-2233. |
90 | MA Y, LIU P, XIE Q, et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode[J]. Nano Energy, 2019, 59: 184-196. |
91 | WU B, YANG X, JIANG X, et al. Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(37): doi: 10.1002/adfm.201803392. |
92 | LIN Z, LUO D, DING X, et al. Accurate control of initial coulombic efficiency for Li-rich Mn-based layered oxides by surface multicomponent integration[J]. Angewandte Chemie International Edition, 2020, doi: 10.1002/anie.202010531. |
93 | SATHIYA M, ABAKUMOV A M, FOIX D, et al. Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nature Materials, 2015, 14(2): 230-238. |
94 | MCCALLA E, ABAKUMOV A M, SAUBANERE M, et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015, 350(6267): 1516-1521. |
95 | LEE J, URBAN A, LI X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170): 519-522. |
96 | ZHOU Y N, MA J, HU E, et al. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries[J]. Nature Communications, 2014, 5: doi:10.1038/ncomms6381. |
97 | JAMES A, GOODENOUGH J B. Structure and bonding in Li2MoO3 and Li2-xMoO3 (0≤x≤1.7)[J]. Journal of Solid State Chemistry, 1988, 76(1): 87-96. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[6] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[7] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[12] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[13] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[14] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[15] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||