1 |
王佳, 孟顺. 发展新能源汽车保障我国能源安全的路径研究[J]. 汽车实用技术, 2020(4): 7-9.
|
|
WANG J, MENG S. Research on the path of developing new energy vehicles to ensure energy security in China[J]. Automobile Technology, 2020(4): 7-9.
|
2 |
LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
3 |
LI M, LU J, CHEN Z, et al. 30 years of lithium‐ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561.
|
4 |
ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable Sustainable Energy Reviews, 2018, 89: 292-308.
|
5 |
肖忠良, 周乘风, 宋刘斌, 等. 富镍锂离子电池三元材料NCM的研究进展[J]. 化工进展, 2020, 39(1): 216-223.
|
|
XIAO Z L, ZHOU C F, SONG L B, et al. Research progress of ternary material NCM for nickel-rich lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 216-223.
|
6 |
HAN X, HUANG Y, LAI H. Electrochemical-thermal coupled investigation of lithium iron phosphate cell performances under air-cooled conditions[J]. Applied Thermal Engineering, 2019, 147: 908-916.
|
7 |
任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966.
|
|
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966.
|
8 |
张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27.
|
|
ZHANG Y J, WANG H W, FENG X N, et al. Research progress on thermal runaway combustion characteristics of power lithium-ion batteries[J]. Journal of Mechanical Engineering, 2019, 55(20): 17-27.
|
9 |
李维平, 李隆键, 陈化雨. 锂离子电池可逆与不可逆生热特性研究[J]. 汽车工程学报, 2019, 9(2): 123-129.
|
|
LI W P, LI L J, CHEN H Y. Investigation on reversible and irreversible heat generation of lithium-ion battery[J]. Chinese Journal of Automotive Engineering, 2019, 9(2): 123-129.
|
10 |
陈军, 康健强, 谭祖宪. 基于电化学–热耦合模型分析18650型锂离子电池的热性能[J]. 化学工程与技术, 2018, 8(2): 97-107.
|
|
CHEN J, KANG J Q, TAN Z X. Analysis of thermal performance of 18650 Li-ion battery based on an electrochemical-thermal coupling model[J]. Journal of Chemical Engineering and Technology, 2018, 8(2): 97-107.
|
11 |
YANG N, FU Y, YUE H, et al. An improved semi-empirical model for thermal analysis of lithium-ion batteries[J]. Electrochimica Acta, 2019, 311: 8-20.
|
12 |
DU S, LAI Y, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510.
|
13 |
AMIRIBAVANDPOUR P, SHEN W, MU D, et al. An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles[J]. Journal of Power Sources, 2015, 284: 328-338.
|
14 |
XU X, JIAN J, XIANG L, et al. Enhancing high-voltage performances of nickel-based cathode material via aluminum and progressive concentration gradient modification[J]. Electrochimica Acta, 2019, 317: 459-467.
|
15 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of Electrochemical Society, 1993, 140(6): doi: 10.1149/1.2221597.
|
16 |
NEWMAN J. Optimization of porosity and thickness of a battery electrode by means of a reaction‐zone model[J]. Journal of Electrochemical Society, 1995, 142(1): doi: 10.1149/1.2043956.
|
17 |
MEI W, CHEN H, SUN J, et al. Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165.
|
18 |
REN D, SMITH K, GUO D, et al. Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model[J]. Journal of Electrochemical Society, 2018, 165(10): A2167-A2178.
|
19 |
ZHANG Y, WANG H, LI W, et al. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100991.
|
20 |
JIANG G, ZHUANG L, HU Q, et al. An investigation of heat transfer and capacity fade in a prismatic Li-ion battery based on an electrochemical-thermal coupling model[J]. Applied Thermal Engineering, 2020, 171: doi: 10.1016/j.applthermaleng.2020.115080.
|
21 |
LIEBIG G, GUPTA G, KIRSTEIN U, et al. Parameterization and validation of an electrochemical thermal model of a lithium-ion battery[J]. Batteries, 2019, 5(3): doi: 10.3390/batteries5030062.
|
22 |
NG B, COMAN P T, MUSTAIN W E, et al. Non-destructive parameter extraction for a reduced order lumped electrochemical-thermal model for simulating Li-ion full-cells[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227296.
|
23 |
崔喜风, 张红亮, 龚阳, 等. 方形硬壳锂离子动力电池的热物性参数[J]. 中国有色金属学报, 2019, 29(12): 2747-2756.
|
|
CUI X F, ZHANG H L, GONG Y, et al. Thermal properties of hard cased lithium-ion power battery[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(12): 2747-2756.
|
24 |
WANG L, NIU J, ZHAO W, et al. Study on electrochemical and thermal characteristics of lithium-ion battery using the electrochemical‐thermal coupled model[J]. International Journal of Energy Research, 2019, 43(6): 2086-2107.
|
25 |
田华, 王伟光, 舒歌群, 等. 基于多尺度、电化学-热耦合模型的锂离子电池生热特性分析[J]. 天津大学学报, 2016, 49(7): 734-741.
|
|
TIAN H, WANG W G, SHU G Q, et al. Analysis of heat generation in a Li-ion battery based on a multi-scale and electrochemical-thermal coupled model[J]. Journal of Tianjin University, 2016, 49(7): 734-741.
|
26 |
YUN F L, TANG L, LI W C, et al. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery[J]. Rare Metals, 2016, 35(4): 309-319.
|
27 |
云凤玲. 高比能量锂离子动力电池热性能及电化学-热耦合行为的研究[D]. 北京: 北京有色金属研究总院, 2016.
|