储能科学与技术 ›› 2021, Vol. 10 ›› Issue (4): 1219-1236.doi: 10.19799/j.cnki.2095-4239.2021.0042
柯承志1(), 肖本胜1, 李苗1, 陆敬予3, 何洋4, 张力2, 张桥保1()
收稿日期:
2021-01-28
修回日期:
2021-02-23
出版日期:
2021-07-05
发布日期:
2021-06-25
通讯作者:
张桥保
E-mail:kechengzhiah@163.com;zhangqiaobao@xmu.edu.cn
作者简介:
柯承志(1995—),男,硕士研究生,主要研究方向为新能源材料,E-mail:基金资助:
Chengzhi KE1(), Bensheng XIAO1, Miao LI1, Jingyu LU3, Yang HE4, Li ZHANG2, Qiaobao ZHANG1()
Received:
2021-01-28
Revised:
2021-02-23
Online:
2021-07-05
Published:
2021-06-25
Contact:
Qiaobao ZHANG
E-mail:kechengzhiah@163.com;zhangqiaobao@xmu.edu.cn
摘要:
锂离子在体相电极材料中的输运、反应、储存所引发的电子和晶体结构、微观形貌、化学组成、物理性质的动态演变与锂离子电池的电化学性能息息相关。从纳米甚至原子尺度上阐明电极在电化学过程中的微观结构、形貌、物相和化学成分的动态演化行为,对理解电极材料基本物理化学特性及其动态演化与电池宏观电化学性能间的构效关系至关重要;这需要借助清晰、精确的先进原位表征手段。在现有各类原位表征技术中,原位透射电镜(TEM)由于其超高的空间和时间分辨率,具有实时、动态监测电极材料在工况下结构、形貌、物相以及表/界面处原子级结构和成分变化的独特优势,是开展上述研究最具代表性的一种重要表征手段;可对电极材料微观动态演变行为和反应机理等进行精确表述,进而为高性能电极材料的构筑与性能调控提供微观依据和创新思路。本文总结归纳了当前采用原位TEM表征技术解析锂离子电池关键电极材料在充放电过程中的微观动态演变规律与失效机制的重要研究进展,包括多种正极材料和高比容量负极材料的原位TEM研究,重点是它们在电化学过程中微观结构、化学成分与物相动态演变等信息。此外,本文对原位TEM表征技术当前存在的问题,以及借助原位TEM技术研究二次电池的未来发展方向进行了展望和思考。
中图分类号:
柯承志, 肖本胜, 李苗, 陆敬予, 何洋, 张力, 张桥保. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236.
Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236.
1 | 缪平, 姚祯, LEMMON J, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678.MIAO P, YAO Z, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. |
2 | ZHONG S Y, SHI J, LUO W W, et al. First-principles insight into Li and Na ion storage in graphene oxide[J]. Chinese Physics B, 2019, 28(7): 591-597. |
3 | ZHAO L Z, WU H H, YANG C H, et al. Mechanistic origin of the high performance of Yolk@Shell Bi2S3@N-doped carbon nanowire electrodes[J]. ACS Nano, 2018, 12(12): 12597-12611. |
4 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
5 | 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 153-180.ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22): 153-180. |
6 | TRIPATHI A M, SU W N, HWANG B J. In situ analytical techniques for battery interface analysis[J]. Chemical Society Reviews, 2018, 47(3): 736-851. |
7 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. |
8 | 岳昕阳, 马萃, 包戬, 等. 金属锂负极失效机制及其先进表征技术[J]. 物理化学学报, 2021, 37(2): 8-29.YUE X Y, MA C, BAO J, et al. Failure mechanisms of lithium metal anode and their advanced characterization technologies[J]. Acta Physico Chimica Sinica, 2021, 37(2): 8-29. |
9 | 拱越, 谷林. 全固态电池中界面的结构演化和物质输运[J]. 物理学报, 2020, 69(22): 57-64.GONG Y, Gu L. Structural evolution and matter transportation of the interface in all-solid-state battery[J]. Acta Physica Sinica, 2020, 69(22): 57-64. |
10 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. |
11 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
12 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
13 | XIANG Y X, LI X, CHENG Y Q, et al. Advanced characterization techniques for solid state lithium battery research[J]. Materials Today, 2020, 36: 139-157. |
14 | WANG Z Y, SANTHANAGOPALAN D, ZHANG W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3766. |
15 | LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10): 3844-3860. |
16 | WU X Y, LI S M, YANG B, et al. In situ transmission electron microscopy studies of electrochemical reaction mechanisms in rechargeable batteries[J]. Electrochemical Energy Reviews, 2019, 2(3): 467-491. |
17 | CHENG Y, ZHANG L Q, ZHANG Q B, et al. Understanding all solid-state lithium batteries through in situ transmission electron microscopy[J]. Materials Today, 2020, 42: 137-161. |
18 | 徐涛, 孙俊, 孙立涛. 原位动态电子显微学研究进展[J]. 物理学进展, 2012, 32(3): 115-134.XU T, SUN J, SUN L T. Progress in dynamic in situ electron microscopy[J]. Progress in Physics, 2012, 32(3): 115-134. |
19 | ZHANG C, FIRESTEIN K L, FERNANDO J F S, et al. Recent progress of in situ transmission electron microscopy for energy materials[J]. Advanced Materials, 2020, 32(18): e1904094. |
20 | HOLTZ M E, YU Y C, GUNCELER D, et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte[J]. Nano Letters, 2014, 14(3): 1453-1459. |
21 | LIU X H, LIU Y, KUSHIMA A, et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures[J]. Advanced Energy Materials, 2012, 2(7): 722-741. |
22 | MA X Y, LUO W, YAN M Y, et al. In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices[J]. Nano Energy, 2016, 24: 165-188. |
23 | 赵一博, 刘蕙蕙, 陈松良, 等. 先进成像技术在全固态锂电池关键问题研究中的应用[J]. 电化学, 2019, 25(1): 17-30.ZHAO Y B, LIU H H, CHEN S L, et al. Applications of advanced imaging technologies for critical issues of all-solid-state lithium battery studies[J]. Journal of Electrochemistry, 2019, 25(1): 17-30. |
24 | 李文俊, 褚赓, 彭佳悦, 等. 锂离子电池基础科学问题(Ⅻ)——表征方法[J]. 储能科学与技术, 2014, 3(6): 642-667.LI W J, CHU G, PENG J Y, et al. Fundamental scientific aspects of lithium batteries (Ⅻ)-Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667. |
25 | LEE H W, LI Y Z, CUI Y. Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes[J]. Current Opinion in Chemical Engineering, 2016, 12: 37-43. |
26 | QI K, WEI J K, SUN M H, et al. Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy[J]. Angewandte Chemie International Edition, 2015, 54(50): 15222-15225. |
27 | LI J, JOHNSON G, ZHANG S, et al. In situ transmission electron microscopy for energy applications[J]. Joule, 2019, 3(1): 4-8. |
28 | 苏庆梅, 杜高辉, 郭俊杰, 等. 原位透射电镜技术在电化学储能领域的研究进展[J]. 中国材料进展, 2020, 39(Z1): 559-575+557-558.SU Q M, DU G H, GUO J J, et al. Recent progress of in situ transmission electron microscopy on electrochemical energy storage[J]. Materials China, 2020, 39(Z1): 559-575+557-558. |
29 | YANG J, MUHAMMAD S, JO M R, et al. In situ analyses for ion storage materials[J]. Chemical Society Reviews, 2016, 45(20): 5717-5770. |
30 | LIU N, LU Z D, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3): 187-192. |
31 | 拱越, 谷林. 锂离子电池材料的电子显微学分析方法[J]. 储能科学与技术, 2019, 8(6): 1260-1270.GONG Y, GU L. Transmission electron microscopy of lithium ion battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1260-1270. |
32 | 张利强, 唐永福, 刘秋男, 等. 原位透射电镜技术在电池领域的研究进展[J]. 储能科学与技术, 2019, 8(6): 1050-1061.ZHANG L Q, TANG Y F, LIU Q N, et al. Review of in situ transmission electron microscopy studies of battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1050-1061. |
33 | YUAN Y F, AMINE K, LU J, et al. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy[J]. Nature Communications, 2017, 8(1): 15806. |
34 | WANG Y, CAO G Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2008, 20(12): 2251-2269. |
35 | REIMERS J N, DAHN J R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992, 139(8): 2091. |
36 | 蓝兹炜, 张建茹, 李园园, 等. 基于锂离子电池正极材料的一元/二元复合正极材料研究进展[J]. 储能科学与技术, 2021, 10(1): 27-39.LAN Z W, ZHANG J R, LI Y Y, et al. Research progress of mono/binary composite cathode materials based on lithium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2021, 10(1): 27-39. |
37 | GONG Y, ZHANG J N, JIANG L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12): 4274-4277. |
38 | YANG Z Z, ONG P V, HE Y, et al. Direct visualization of Li dendrite effect on LiCoO2 cathode by in situ TEM[J]. Small, 2018, 14(52): e1803108. |
39 | 李文俊, 郑杰允, 谷林, 等. 锂电池原位与非原位表征技术研究[J]. 电化学, 2015, 21(2): 99-114.LI W J, ZHENG J Y, GU L, et al. Researches on in-situ and ex-situ characterization techniques in lithium batteries[J]. Journal of Electrochemistry, 2015, 21(2): 99-114. |
40 | SHU J, SHUI M, HUANG F T, et al. A new look at lithium cobalt oxide in a broad voltage range for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2010, 114(7): 3323-3328. |
41 | WEKER J N, WISE A M, LIM K, et al. Operando spectroscopic microscopy of LiCoO2 cathodes outside standard operating potentials[J]. Electrochimica Acta, 2017, 247: 977-982. |
42 | ZHU Y J, WANG J W, LIU Y, et al. In situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation[J]. Advanced Materials, 2013, 25(38): 5461-5466. |
43 | NIU J J, KUSHIMA A, QIAN X F, et al. In situ observation of random solid solution zone in LiFePO4 electrode[J]. Nano Letters, 2014, 14(7): 4005-4010. |
44 | LI S, YAO Z P, ZHENG J M, et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode[J]. Angewandte Chemie International Edition, 2020, 59(49): 22092-22099. |
45 | GONG Y, CHEN Y Y, ZHANG Q H, et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery[J]. Nature Communications, 2018, 9(1): 3341. |
46 | 麦立强, 陈丹丹, 赵康宁, 等. 纳米线电化学储能材料与器件[J]. 科学通报, 2013, 58(32): 3312-3327.MAI L Q, CHEN D D, ZHAO K N, et al. Nanowire device for electrochemical energy storage[J]. Chinese Science Bulletin, 2013, 58(32): 3312-3327. |
47 | 余晨露, 田晓华, 郑瀚, 等. 高稳定性硅/硬碳复合负极在锂电负极中的应用[J]. 储能科学与技术, 2021, 10(1): 128-136.YU C L, TIAN X H, ZHANG H, et al. Research progress in high stability of silicon/hard carbon anodes for LIBs[J]. Energy Storage Science and Technology, 2021, 10(1): 128-136. |
48 | ZHENG Z, WU H H, CHEN H, et al. Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries[J]. Nanoscale, 2018, 10(47): 22203-22214. |
49 | HE Y, PIPER D M, GU M, et al. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries[J]. ACS Nano, 2014, 8(11): 11816-23. |
50 | WANG J W, HE Y, FAN F F, et al. Two-phase electrochemical lithiation in amorphous silicon[J]. Nano Letters, 2013, 13(2): 709-15. |
51 | GU M, LI Y, LI X L, et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix[J]. ACS Nano, 2012, 6(9): 8439-8447. |
52 | MCDOWELL M T, LEE S W, WANG C M, et al. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation[J]. Nano Energy, 2012, 1(3): 401-410. |
53 | WANG X J, FAN F F, WANG J W, et al. High damage tolerance of electrochemically lithiated silicon[J]. Nature Communications, 2015, 6: 8417. |
54 | GHASSEMI H, AU M, CHEN N, et al. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods[J]. ACS Nano, 2011, 5(10): 7805-7811. |
55 | LEE S W, MCDOWELL M T, CHOI J W, et al. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters, 2011, 11(7): 3034-3039. |
56 | LIU X H, ZHENG H, ZHONG L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Letters, 2011, 11(8): 3312-3318. |
57 | LIU X H, WANG J W, HUANG S, et al. In situ atomic-scale imaging of electrochemical lithiation in silicon[J]. Nature Nanotechnology, 2012, 7(11): 749-56. |
58 | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-31. |
59 | WANG J W, LIU X H, ZHAO K, et al. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers[J]. ACS Nano, 2012, 6(10): 9158-67. |
60 | ZHANG Q B, CHEN H X, LUO L L, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(3): 669-681. |
61 | WANG H K, YANG X M, WU Q Z, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage[J]. ACS Nano, 2018, 12(4): 3406-3416. |
62 | WANG C M, LI X L, WANG Z G, et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries[J]. Nano Letters, 2012, 12(3): 1624-1632. |
63 | SON I H, HWAN PARK J, KWON S, et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density[J]. Nature Communications, 2015, 6: 7393. |
64 | LI Y Z, YAN K, LEE H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1(2): 15029. |
65 | AN W L, GAO B, MEI S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes[J]. Nature Communications, 2019, 10(1): 1447. |
66 | LU Z D, LIU N, LEE H W, et al. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes[J]. ACS Nano, 2015, 9(3): 2540-2547. |
67 | LIU X H, HUANG S, PICRAUX S T, et al. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study[J]. Nano Letters, 2011, 11(9): 3991-3997. |
68 | BOEBINGER M G, YAREMA O, YAREMA M, et al. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling[J]. Nature Nanotechnology, 2020, 15(6): 475-481. |
69 | LI Y Y, OU C Z, ZHU J L, et al. Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith[J]. Nano Letters, 2020, 20(3): 2034-2046. |
70 | LIANG W T, HONG L, YANG H, et al. Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling[J]. Nano Letters, 2013, 13(11): 5212-5217. |
71 | SU Q M, XIE D, ZHANG J, et al. In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes[J]. ACS Nano, 2013, 7(10): 9115-9121. |
72 | YU W J, ZHANG L L, HOU P X, et al. High reversible lithium storage capacity and structural changes of Fe2O3 nanoparticles confined inside carbon nanotubes[J]. Advanced Energy Materials, 2016, 6(3): 1501755. |
73 | ZHENG Z M, LI P, HUANG J, et al. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design[J]. Journal of Energy Chemistry, 2020, 41: 126-134. |
74 | ZHENG Z M, WU H H, LIU H D, et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets[J]. ACS Nano, 2020, 14(8): 9545-9561. |
75 | HE K, ZHANG S, LI J, et al. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy[J]. Nature Communications, 2016, 7: 11441. |
76 | LI J, HWANG S, GUO F M, et al. Phase evolution of conversion-type electrode for lithium ion batteries[J]. Nature Communications, 2019, 10(1): 2224. |
77 | WANG X, TANG D M, LI H Q, et al. Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy[J]. Chemical Communications, 2012, 48(40): 4812-4814. |
78 | LI J, HE K, MENG Q Q, et al. Kinetic phase evolution of spinel cobalt oxide during lithiation[J]. ACS Nano, 2016, 10(10): 9577-9585. |
79 | HE K, LIN F, ZHU Y Z, et al. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation[J]. Nano Letters, 2015, 15(9): 5755-5763. |
80 | GREGORCZYK K E, LIU Y, SULLIVAN J P, et al. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2[J]. ACS Nano, 2013, 7(7): 6354-6360. |
81 | CHEN K J, CAO K, XING C C, et al. In-situ TEM study of the lithiation and delithiation of FeS nanosheets[J]. Journal of Alloys and Compounds, 2016, 688: 946-952. |
82 | SU Q M, XIE J, ZHANG J, et al. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 3016-3022. |
83 | HE Y, GU M, XIAO H Y, et al. Atomistic conversion reaction mechanism of WO3 in secondary ion batteries of Li, Na, and Ca[J]. Angewandte Chemie International Edition, 2016, 55(21): 6244-6247. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[6] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[11] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[12] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||