储能科学与技术 ›› 2021, Vol. 10 ›› Issue (4): 1237-1252.doi: 10.19799/j.cnki.2095-4239.2021.0274
岑官骏(), 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2021-06-18
出版日期:
2021-07-05
发布日期:
2021-06-25
通讯作者:
黄学杰
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@jphy.ac.an
作者简介:
岑官骏(1997—),男,博士研究生,研究方向为固态锂离子电池负极材料,E-mail:Guanjun CEN(), Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-06-18
Online:
2021-07-05
Published:
2021-06-25
Contact:
Xuejie HUANG
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@jphy.ac.an
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年4月1日至2021年5月31日上线的锂电池研究论文,共有3015篇,选择其中100篇加以评论。正极材料方面的研究主要集中在层状结构高镍三元、高压钴酸锂和尖晶石结构镍锰酸锂的合成条件、表面包覆和体相掺杂改性。硅基复合负极材料的研究重点包括对硅颗粒的包覆和对电极结构的优化以缓冲体积变化。金属锂负极的研究侧重于通过电解液添加剂来调控SEI的生长以及抑制锂枝晶的形成。固态电解质的研究主要包括对氧化物固态电解质、硫化物固态电解质、聚合物固态电解质以及复合固态电解质的合成、结构设计以及相关性能研究。液态电解液方面的研究主要包括提升石墨、硅负极的性能,以及适应高电压镍锰酸锂、三元层状材料、钴酸锂材料等正极材料电池的电解液溶剂、锂盐及添加剂。固态电池方向更多关注于复合正极设计和制备、活性材料表面的修饰、Li金属负极界面修饰。其他电池技术主要包括设计具有高离子/电子导电基体的复合锂硫正极,以及通过电解液添加剂来抑制多硫化物“穿梭效应”。测试技术方面涵盖了对Li金属的沉积、硅负极的SEI、复合正极的微结构和界面反应等问题的观测和分析。理论模拟工作涉及固态电池中固体电解质及其与电极界面的稳定性。界面问题侧重于关注固体电解质和Li金属负极界面副反应和Li枝晶生长。
中图分类号:
岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.4.1—2021.5.31)[J]. 储能科学与技术, 2021, 10(4): 1237-1252.
Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252.
1 | WANG C, ZHANG R, KISSLINGER K, et al. Atomic-scale observation of O1 faulted phase-induced deactivation of LiNiO2 at high voltage[J]. Nano Letters, 2021, doi: 10.1021/acs.nanolett. 1c00862. |
2 | SU L, WEAVER J L, GROENENBOOM M, et al. Tailoring electrode-electrolyte interfaces in lithium-ion batteries using molecularly engineered functional polymers[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9919-9931. |
3 | SONG S, LI Y, YANG K, et al. Interplay between multiple doping elements in high-voltage LiCoO2[J]. Journal of Materials Chemistry A, 2021, 9(9): 5702-5710. |
4 | LI X, GAO A, TANG Z, et al. Robust surface reconstruction induced by subsurface Ni/Li antisites in Ni-rich cathodes[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010291. |
5 | LIU M, REN Z, WANG D, et al. Addressing unfavorable influence of particle cracking with a strengthened shell layer in Ni-rich cathodes[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c05535. |
6 | ZHANG X, QIU Y, CHENG F, et al. Realization of a high-voltage and high-rate nickel-rich NCM cathode material for LIBs by Co and Ti dual modification[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17707-17716. |
7 | FANTIN R, TREVISANELLO E, RUESS R, et al. Synthesis and postprocessing of single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state lithium-ion batteries with high capacity and long cycling stability[J]. Chemistry of Materials, 2021, 33(7): 2624-2634. |
8 | GAO C, LIU H, BI S, et al. Insights for the new function of N,N-dimethylpyrrolidone in preparation of a high-voltage spinel LiNi0.5Mn1.5O4 cathode[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c01283. |
9 | VASQUEZ F A, ROSERO-NAVARRO N C, MIURA A, et al. Kinetic control of the Li0.9Mn1.6Ni0.4O4 spinel structure with enhanced electrochemical performance[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14056-14067. |
10 | SANDARUWAN R D L, CONG L, MA L, et al. Tackling the interfacial issues of spinel LiNi0.5Mn1.5O4 by roomtemperature spontaneous dediazonation reaction[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13264-13272. |
11 | WANG R, CHEN X, HUANG Z, et al. Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials[J]. Nature Communications, 2021, 12(1): 3085-3085. |
12 | LUO D, ZHENG L, ZHANG Z, et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries[J]. Nature Communications, 2021, doi:10.1038/s41467-020-20339-1 . |
13 | HAN B, ZHANG Z, ZOU Y, et al. Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy[J]. Advanced Materials, 2021, doi: 10.1002/adma.202100404. |
14 | MAY R, FRITZSCHING K J, LIVITZ D, et al. Rapid interfacial exchange of Li ions dictates high coulombic efficiency in Li metal anodes[J]. ACS Energy Letters, 2021, 6(4): 1162-1169. |
15 | HUANG K, BI S, KURT B, et al. Regulation of SEI formation by anion receptors to achieve ultra-stable lithium metal battery[J]. Angewandte Chemie (International ed. in English), 2021, doi: 10.1002/anie.202104671. |
16 | JIN C, LIU T, SHENG O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, 6(4): 378-387. |
17 | CHEN J, LIU T, GAO L, et al. Tuning the solution structure of electrolyte for optimal solid-electrolyte-interphase formation in high-voltage lithium metal batteries[J]. Journal of Energy Chemistry, 2021, doi: 10.1016/j.jechem.2021.01.007. |
18 | CHEN M, MA C, DING Z, et al. Upgrading electrode/electrolyte interphases via polyamide-based quasi-solid electrolyte for long-life nickel-rich lithium metal batteries[J]. ACS Energy Letters, 2021, 6(4): 1280-1289. |
19 | PHAM T D, LEE K K. Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte[J]. Small, 2021, doi: 10.1002/smll. 202100133. |
20 | BAEK S H, JEONG Y M, SHIN S C, et al. Tunable solid electrolyte interphase formation on SiO anodes using SnO artificial layers for lithium-ion batteries[J]. Applied Surface Science, 2021, doi:10.1016/j.apsusc.2021.149028 . |
21 | CHANG C B, TSAI C Y, CHEN K T, et al. Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode[J]. ACS Applied Energy Materials, 2021, 4(4): 3160-3168. |
22 | LI Y, QIAN Y, ZHOU J, et al. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial coulombic efficiency[J]. Nano Research, 2021, doi: 10.1007/s12274-021-3464-2. |
23 | WANG H, MIAO M, LI H, et al. Insitu-formed artificial solid electrolyte interphase for boosting the cycle stability of Si-based anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22505-22513. |
24 | LEE H A, SHIN M, KIM J, et al. Designing adaptive binders for microenvironment settings of silicon anode particles[J]. Advanced Materials, 2021, doi:10.1002/adma.202007460 . |
25 | WU S, YANG Y, LIU C, et al. In-situ polymerized binder: A three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries[J]. ACS Energy Letters, 2021, 6(1): 290-297. |
26 | DENG L, DENG S S, PAN S Y, et al. Multivalent amide-hydrogen-bond supramolecular binder enhances the cyclic stability of silicon-based anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22567-22576. |
27 | ZHANG Y, HUANG J, LIAO Z, et al. Natural self-confined structure effectively suppressing volume expansion toward advanced lithium storage[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c02269. |
28 | YARMOLICH D, ODARCHENKO Y, MURPHY C, et al. Novel binder-free carbon anode for high capacity Li-ion batteries[J]. Nano Energy, 2021, doi: 10.1016/j.nanoen.2021.105816. |
29 | TSENG Y C, HSIANG S H, TSAO C H, et al. In situ formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(9): 5796-5806. |
30 | CHO Y-G, JUNG S H, JEONG J, et al. Metal-ion chelating gel polymer electrolyte for Ni-rich layered cathode materials at a high voltage and an elevated temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9965-9974. |
31 | FU C, MA Y, ZUO P, et al. In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229861. |
32 | WANG Y, ZANELOTTI C J, WANG X, et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nature Materials, 2021, doi: 10.1038/s41563-021-00995-4. |
33 | TAKAHASHI M, YANG S, YAMAMOTO K, et al. Improvement of lithium ionic conductivity of Li3PS4 through suppression of crystallization using low-boiling-point solvent in liquid-phase synthesis[J]. Solid State Ionics, 2021, doi: 10.1016/j.ssi.2021.115568. |
34 | CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Chemical stability of Li4PS4I solid electrolyte against hydrolysis[J]. Applied Materials Today, 2021, doi: 10.1002/cssc.202100526. |
35 | WU L, LIU G, WAN H, et al. Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229565. |
36 | PATEL S V, BANERJEE S, LIU H, et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6-xPS5-xClBrx: An unusual compositional space[J]. Chemistry of Materials, 2021, 33(4): 1435-1443. |
37 | LIU K, LI X, CAI J, et al. Design of high-voltage stable hybrid electrolyte with an ultrahigh Li transference number[J]. ACS Energy Letters, 2021, 6(4): 1315-1323. |
38 | CHEN W-P, DUAN H, SHI J-L, et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte[J]. Journal of the American Chemical Society, 2021, 143(15): 5717-5726. |
39 | LI X, GUO L, LI J, et al. Reversible cycling of graphite electrodes in propylene carbonate electrolytes enabled by ethyl isothiocyanate[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami. 1c04607. |
40 | TAN S, RODRIGO U N D, SHADIKE Z, et al. Novel low-temperature electrolyte using isoxazole as the main solvent for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c05894. |
41 | ZHANG K, TIAN Y, WEI C, et al. Building stable solid electrolyte interphases (SEI) for microsized silicon anode and 5V-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte[J]. Applied Surface Science, 2021, doi: 10.1016/j.apsusc.2021.149566. |
42 | BEZABH H K, CHIU S-F, HAGOS T M, et al. Bridging role of ethyl methyl carbonate in fluorinated electrolyte on ionic transport and phase stability for lithium-ion batteries[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229760. |
43 | DOI T, TACCORI R J, FUJII R, et al. Non-flammable and highly concentrated carbonate ester-free electrolyte solutions for 5V-class positive electrodes in lithium-ion batteries[J]. Chemsuschem, 2021, doi: 10.1002/cssc.202100523. |
44 | ZHAO M, XU G, LU D, et al. Formulating a non-flammable highly concentrated dual-salt electrolyte for wide temperature high-nickel lithium ion batteries[J]. Journal of the Electrochemical Society, 2021, doi: 10.1149/1945-7111/abfb39. |
45 | XUE W, HUANG M, LI Y, et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte[J]. Nature Energy, 2021, doi: 10.1038/s41560-021-00792-y. |
46 | DING J-F, XU R, YAO N, et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202101627. |
47 | NIKIFORIDIS G, RAGHIBI M, SAYEGH A, et al. Low-concentrated lithium hexafluorophosphate ternary-based electrolyte for a reliable and safe NMC/graphite lithium-ion battery[J]. Journal of Physical Chemistry Letters, 2021, 12(7): 1911-1917. |
48 | LI Y, AN Y, TIAN Y, et al. High-safety and high-voltage lithium metal batteries enabled by a nonflammable ether-based electrolyte with phosphazene as a cosolvent[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10141-10148. |
49 | LIU X, SHEN X, LI H, et al. Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003905. |
50 | TAN C, YANG J, PAN Q, et al. Optimizing interphase structure to enhance electrochemical performance of high voltage LiNi0.5Mn1.5O4 cathode via anhydride additives[J]. Chemical Engineering Journal, 2021, doi: 10.1016/j.cej.2021.128422. |
51 | JIANG S, WU H, YIN J, et al. Benzoic anhydride as a bifunctional electrolyte additive for hydrogen fluoride capture and robust film construction over high-voltage Li-ion batteries[J]. Chemsuschem, 2021, 14(9): 2067-2075. |
52 | IM J, AHN J, CHOI H, et al. A dual-function sulfite-type additive for long cycle life in high-voltage lithium metal batteries[J]. Journal of Alloys and Compounds, 2021, doi: 10.1016/j.jallcom.2021.159662. |
53 | LIU G, XU N, ZOU Y, et al. Stabilizing Ni-rich LiNi0.83Co0.12Mn0.05O2 with cyclopentyl isocyanate as a novel electrolyte additive[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12069-12078. |
54 | ZOU Y, ZHOU K, LIU G, et al. Enhanced cycle life and rate capability of single-crystal, Ni-rich LiNi0.9Co0.05Mn0.05O2 enabled by 1,2,4-1H-triazole additive[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16427-16436. |
55 | PHAM H Q, NGUYEN M T, TARIK M, et al. Cross-talk-suppressing electrolyte additive enabling high voltage performance of Ni-rich layered oxides in Li-ion batteries[J]. Chemsuschem, 2021, doi: 10.1002/cssc.202100511. |
56 | LI S, LI C, YANG T, et al. 3,3-diethylene Di-sulfite (DES) as a high-voltage electrolyte additive for 4.5V LiNi0.8Co0.1Mn0.1O2/graphite batteries with enhanced performances[J]. Chemelectrochem, 2021, 8(4): 745-754. |
57 | JIA H, XU Y, ZHANG X, et al. Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202102403. |
58 | CHAE S, KWAK W J, HAN K S, et al. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range[J]. ACS Energy Letters, 2021, 6(2): 387-394. |
59 | ZHANG L, ZUO X, ZHU T, et al. 1-(p-Toluenesulfonyl)imidazole (PTSI) as the novel bifunctional electrolyte for LiCoO2-based cells with improved performance at high voltage[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229596. |
60 | LIAO X Q, LI F, ZHANG C M, et al. Improving the stability of high-voltage lithium cobalt oxide with a multifunctional electrolyte additive: Interfacial analyses[J]. Nanomaterials, 2021, doi: 10.3390/nano11030609. |
61 | DENG W, DAI W, ZHOU X, et al. Competitive solvation-induced concurrent protection on the anode and cathode toward a 400 W·h·kg-1 lithium metal battery[J]. ACS Energy Letters, 2021, 6(1): 115-123. |
62 | LI H, LIAN F, MENG N, et al. Constructing electronic and ionic dual conductive polymeric interface in the cathode for high-energy-density solid-state batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202008487. |
63 | LI X, CONG L, MA S, et al. Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010611. |
64 | ALZAHRANI A S, OTAKI M, WANG D, et al. Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(2): 413-418. |
65 | LI M, LIU T, SHI Z, et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma.202008723. |
66 | HUO H, GAO J, ZHAO N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, doi: 10.1038/s41467-020-20463-y. |
67 | ZHANG S, ZENG Z, ZHAI W, et al. Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, doi: 10.1002/admi.202100072. |
68 | WAN H, LIU S, DENG T, et al. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery[J]. ACS Energy Letters, 2021, 6(3): 862-868. |
69 | LI C, CHEN Y, LI Z, et al. Construction of sticky ionic conductive buffer layer for inorganic electrolyte toward stable all-solid-state lithium metal batteries[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229765. |
70 | LIU G, SHI J, ZHU M, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, doi: 10.1016/j.ensm.2021.03.017. |
71 | CHI X, LI M, DI J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery[J]. Nature, 2021, 592(7855): 551-557. |
72 | LI J, WANG Z, YANG L, et al. A flexible Li-air battery workable under harsh conditions based on an integrated structure: A composite lithium anode encased in a gel electrolyte[J].ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.0c22783. |
73 | JIN Z, LIN T, JIA H, et al. Expediting the conversion of Li2S2 to Li2S enables high-performance Li-S batteries[J]. ACS Nano, 2021, doi: 10.1021/acsnano.1c00556. |
74 | LIU Y T, WANG L, LIU S, et al. Constructing high gravimetric and volumetric capacity sulfur cathode with LiCoO2 nanofibers as carbon-free sulfur host for lithium-sulfur battery[J]. Science China-Materials, 2021, 64(6): 1343-1354. |
75 | HE J, BHARGAV A, MANTHIRAM A. High-energy-density, long-life lithium-sulfur batteries with practically necessary parameters enabled by low-cost Fe-Ni nanoalloy catalysts[J].ACS Nano, 2021, doi: 10.1021/acsnano.1c00446. |
76 | WANG X, YANG Y, LAI C, et al. Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202016240. |
77 | GUPTA A, BHARGAV A, MANTHIRAM A. Evoking high-donor-number-assisted and organosulfur-mediated conversion in lithium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(1): 224-231. |
78 | WANG Y, MENG Y, ZHANG Z, et al. Trifunctional electrolyte additive hexadecyltrioctylammonium iodide for lithium-sulfur batteries with extended cycle life[J].ACS Applied Materials & Interfaces, 2021, 13(14): 16545-16557. |
79 | FENG J, YI H, LEI Z, et al. A three-dimensional crosslinked chitosan sulfate network binder for high-performance Li-S batteries[J]. Journal of Energy Chemistry, 2021, doi: 10.1016/j.jechem.2020.07.060. |
80 | CHEN K, FANG R, LIAN Z, et al. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries[J]. Energy Storage Materials, 2021, doi: 10.1016/j.ensm.2021.02.012. |
81 | CHEN Q, GUO W, WANG D, et al. A self-healing Li-S redox flow battery with alternative reaction pathways[J]. Journal of Materials Chemistry A, 2021, doi: 10.1039/d1ta01973b. |
82 | ZHANG X Q, JIN Q, NAN Y, et al. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries[J]. Angewandte Chemie (International ed. in English), 2021, doi: 10.1002/anie.202103470. |
83 | GUO L, XIN C, GAO J, et al. The electrolysis of anti-perovskite Li2OHCl for prelithiation of high-energy-density batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202102605. |
84 | FU A, WANG C, PENG J, et al. Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202009805. |
85 | BARAN M J, CARRINGTON M E, SAHU S, et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages[J]. Nature, 2021, doi: 10.1038/s41586-021-03377-7. |
86 | PRIMO E N, CHOUCHANE M, TOUZIN M, et al. Understanding the calendering processability of Li(Ni0.33Mn0.33Co0.33)O2-based cathodes[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2020.229361. |
87 | JEON D H. Enhancing electrode wettability in lithium-ion battery via particle-size ratio control[J]. Applied Materials Today, 2021, doi: 10.1016/j.apmt.2021.100976. |
88 | BLAUBAUM L, ROSE P, SCHMIDT L, et al. The effects of gas-saturation of electrolytes on the performance and durability of lithium-ion batteries[J]. Chemsuschem, 2021, doi: 10.1002/cssc.202100845. |
89 | LU Z, YANG Z, LI C, et al. Modulating nanoinhomogeneity at electrode-solid electrolyte interfaces for dendrite-proof solid-state batteries and long-life memristors[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003811. |
90 | EZZEDINE M, ZAMFIR M R, JARDALI F, et al. Insight into the formation and stability of solid electrolyte interphase for nanostructured silicon-based anode electrodes used in Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c03302. |
91 | KROLL M, KARSTENS S L, CRONAU M, et al. Three-phase reconstruction reveals how the microscopic structure of the carbon-binder domain affects ion transport in lithium-ion batteries[J]. Batteries & Supercaps, 2021, doi: 10.1002/batt.202100057. |
92 | HABER S, ROSY, SAHA A, et al. Structure and functionality of an alkylated LixSiyOz interphase for high-energy cathodes from DNP-ssNMR spectroscopy[J]. Journal of the American Chemical Society, 2021, 143(12): 4694-4704. |
93 | YAMAGISHI Y, MORITA H, NOMURA Y, et al. Visualizing lithium distribution and degradation of composite electrodes in sulfide-based all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 580-586. |
94 | LAIN M J, KENDRICK E. Understanding the limitations of lithium ion batteries at high rates[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229690. |
95 | CHEN F, CHENG S, LIU J B, et al. Insights into the electrochemical stability and lithium conductivity of Li4MS4 (M=Si, Ge, and Sn)[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22438-22447. |
96 | LYTLE T K, MURALIDHARAN A, YETHIRAJ A. Why lithium ions stick to some anions and not others[J]. The Journal of Physical Chemistry B, 2021, 125(17): 4447-4455. |
97 | MA J, QUHE R, ZHANG Z, et al. Two-dimensional materials as a stabilized interphase for the solid-state electrolyte Li10GeP2S12 in lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(8): 4810-4821. |
98 | SHISHVAN S S, FLECK N A, DESHPANDE V S. The initiation of void growth during stripping of Li electrodes in solid electrolyte cells[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2020.229437. |
99 | PARK H, YU S, SIEGEL D J. Predicting charge transfer stability between sulfide solid electrolytes and Li metal anodes[J]. ACS Energy Letters, 2021, 6(1): 150-157. |
100 | NING Z, JOLLY D S, LI G, et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells[J]. Nature Materials, 2021, doi: 10.1038/s41563-021-00967-8. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[7] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[8] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[9] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[10] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[11] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[12] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[13] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[14] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[15] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||